

MANUAL DE OPERACIÓN DEL PANEL DE CONTROL

ENFRIADOR TIPO SCROLL REFRIGERADO POR AIRE Y BOMBA DE CALOR

CONTROLADOR MICROTECH III Software Versión 3.01.A D-EOMHP00607-14ES

Contenidos

1	Intr	oduo	cción	6
	1.1	Fun	ciones del controlador	7
2	Des	cripo	ción general del sistema	8
	2.1	Con	nponentes de comunicación	. 8
	2.2	Maj	oa E/S de la unidad	8
	2.3	Mo	do de la unidad	10
3	Fun	cion	es de la unidad	10
	3.1	Elm	nodo de la unidad CALOR	10
	3.2	Elm	nodo de la unidad CALOR / FRÍO con GLICOL	10
	3.3	Elm	nodo de la unidad CALOR / HIELO con GLICOL	10
	3.4	Cálo	culos	11
	3.4.	.1	Delta T del evaporador	11
	3.4.	.2	Pendiente de LWT	11
	3.4.	.3	Índice de descenso	11
	3.4.	.4	Error de LWT	11
	3.4.	.5	Capacidad de la unidad	11
	3.4.	.6	Banda de control	11
	3.4.	.7	Temperaturas de fase	12
	3.5	Esta	ndos de la unidad	12
	3.6	Esta	ndo de la unidad	13
	3.7	Den	nora de puesta en marcha tras encendido	14
	3.8	Con	trol de la bomba del evaporador	14
	3.9	Con	figuración de la bomba del evaporador	14
	3.9.	.1	Fase de bomba principal/en espera	15
	3.9.	.2	Control automático	15
	3.10	Obj	etivo de LWT	15
	3.10	0.1	Reinicio de temperatura del agua saliente (LWT)	15
	3.10	0.2	Anulación de temperatura del agua saliente (LWT)	16
	3.10	0.3	Reinicio de 4-20mA	16
	3.10	0.4	Reinicio de OAT	16
	3.11	Con	trol de capacidad de la unidad	17
	3.13	1.1	Fase de compresor en modo Frío	17
	3.13	1.2	Fase de compresor en modo caliente	18

	3.1	1.3	Demora de fase de los compresores	18
	3.12	Anι	ılaciones de la capacidad de la unidad	19
	3.1	2.1	Límite de demanda	19
	3.1	2.2	Límite de red	20
	3.1	2.3	Índice máximo de subida/bajada de LWT	20
	3.1	2.4	Límite superior de temperatura ambiente	20
	3.1	2.5	Control de ventiladores en configuración "V"	20
	3.13	Obj	etivo del evaporador	22
	3.1	3.1	Gestión de la carga desequilibrada	22
	3.1	3.2	Fase alta	22
	3.1	.3.3	Fase baja	22
	3.1	3.4	Frecuencia variable (VFD)	23
	3.1	.3.5	Estado de VFD	23
	3.1	3.6	Compensación de fase alta	23
4	Fur	ncion	es del circuito	23
	4.1	Cálo	culos	23
	4.1	1	Temperatura saturada del refrigerante	23
	4.1	2	Aproximación del evaporador	23
	4.1	3	Aproximación del condensador	23
	4.1	4	Sobrecalentamiento de succión	24
	4.1	5	Presión de bombeado	24
	4.2	Lóg	ica del control de circuitos	24
	4.2	2.1	Habilitación de circuitos	24
	4.2	2.2	Estados del circuito	24
	4.3	Esta	ado del circuito	25
	4.4	Pro	cedimiento de bombeo	26
	4.5	Con	trol del compresor	26
	4.5	5.1	Disponibilidad del compresor	26
	4.5	5.2	Poner en marcha un compresor	26
	4.5	5.3	Detener un compresor	26
	4.5	5.4	Temporizadores de ciclo	26
	4.6	Con	trol de ventiladores en configuración "W"	27
	4.6	5.1	Fase de ventilador	27
	4.6	5.2	Objetivo del control de ventiladores	28

	4.7	Cor	itrol de la EXV	29
	4.7	.1	Rango de posición EXV	31
	4.7	.2	Control de presión de arranque	31
	4.7	.3	Control de presión máx.	32
	4.7	.4	Control de presión manual	32
	4.8	Cor	ntrol de válvula de cuatro vías	32
	4.8	.1	Estado de la válvula de cuatro vías	32
	4.9	Vál	vula de purga de gas	33
	4.10	Anι	ılaciones de capacidad: límites de operación	33
	4.1	0.1	Presión baja del evaporador	34
	4.1	0.2	Presión alta del condensador	34
	4.1	0.3	Arranques de ambiente bajo	34
	4.11	Pru	eba de presión alta	34
	4.12	Lóg	ica del control de descongelación	34
	4.1	2.1	Detección de la condición de descongelación	35
	4.1	2.2	Descongelación de ciclo inverso	35
	4.12.3		Descongelación manual	37
	4.13	Tab	las de puntos de ajuste	38
	4.14	Ran	gos autoajustados	41
	4.15	Оре	eraciones de punto de ajuste especiales	41
5	Ala	rma		42
	5.1	Des	cripciones de alarma de la unidad	42
	5.2	Ala	rmas de falla de la unidad	43
	5.2	.1	Falla de GFP / pérdida de voltaje de fase	43
	5.2	.2	Congelación de del agua apagada	43
	5.2	.3	Pérdida de flujo de agua	44
	5.2	.4	Protección contra la congelación de la bomba	45
	5.2	.5	Temperatura del agua invertida	45
	5.2	.6	Bloqueo de OAT bajo	45
	5.2	.7	Falla de sensor de LWT	46
	5.2	.8	Falla de sensor de EWT	47
	5.2	.9	Falla del sensor de OAT	47
	5.2	.10	Alarma externa	47
	5.3	Ala	rmas de advertencia de la unidad	47

	5.3	3.1	Entrada incorrecta de límite de demanda	47
	5.3	3.2	Punto de reinicio de LWT incorrecto	48
	5.3	3.3	Lectura incorrecta de la corriente de la unidad	48
	5.3	3.4	Fallo de comunicación de la red del enfriador	48
	5.4	Eve	ntos de la unidad	49
	5.4	l.1	Pérdida de alimentación durante el funcionamiento	49
	5.5	Alaı	ma de circuito	49
	5.5	5.1	Descripciones de alarma del circuito	49
	5.5	5.2	Alarmas del circuito detalladas	49
6	Ар	éndic	e A: Especificaciones y calibraciones del sensor	54
	6.1	Sen	sores de temperatura	54
	6.2	Trai	nsductores de presión	54
7	Ар	éndic	e B: Localización de fallas	54
	7.1	FAL	LA PVM/GFP (en la pantalla: PvmGfpAl)	54
	7.2	PÉR	DIDA DE FLUJO DEL OPERADOR (en la pantalla: EvapFlowLoss)	55
	7.3 Evap\		TECTOR CONTRA LA CONGELACIÓN DEL AGUA DEL OPERADOR (en la pantalla:	55
	7.4	FAL	LA DEL SENSOR DE TEMPERATURA	56
	7.5	ALA	RMA o ADVERTENCIA EXTERNA (en la pantalla: ExtAlarm)	56
	7.6	ACC	IÓN CORRECTIVA	57
	7.6	5.1	PRESIÓN BAJA DEL EVAPORADOR (en la pantalla: LowEvPr)	57
	7.6	5.2	ALARMA DE PRESIÓN ALTA DEL CONDENSADOR	58
	7.6	5.3	FALLA DE PROTECCIÓN DEL MOTOR (en la pantalla: CoX.MotorProt)	60
	7.6 Co		FALLA DE REINICIO DE TEMPERATURA AMBIENTE EXTERIOR (OAT) BAJA (en la pantalla: startFlt)	61
	7.6	5.5	NO HAY CAMBIO DE PRESIÓN TRAS EL ARRANQUE (en la pantalla: NoPrChgAl)	62
	7.6	5.6	FALLA DEL SENSOR DE PRESIÓN DEL EVAPORADOR (en la pantalla: EvapPsenf)	62
	7.6	5.7	FALLA DEL SENSOR DE TEMPERATURA DE SUCCIÓN (en la pantalla: SuctTsenf)	63
	7.6	5.8	FALLA COM. MÓDULO 1/2 EXV (en la pantalla: EvPumpFlt1)	63
	7.7	Visi	ón general de la alarma de problema	64
	7.7	7.1	BLOQUEO DE AMBIENTE BAJO (en la pantalla: LowOATemp)	64
	7.7	7.2	FALLA DE LA BOMBA 1 DEL EVAPORADOR (en la pantalla: EvPumpFlt1)	65
	7.7	7.3	FALLA DE LA BOMBA 2 DEL EVAPORADOR (en la pantalla: EvPumpFlt2)	66
	7.8	Visi	ón general de la alarma de advertencia	66
	7.8	3.1	Alarmas de advertencia de la unidad	66

	7.8.2	EVENTO EXTERNO (en la pantalla: ExternalEvent)	67
	7.8.3	ENTRADA INCORRECTA DEL LÍMITE DE DEMANDA (en la pantalla: BadDemandLmInpW)	67
	7.8.4	ENTRADA INCORRECTA DE REINICIO DE TEMPERATURA DEL AGUA SALIENTE (LWT)	68
	7.8.5	FALLA DEL SENSOR DE TEMPERATURA DEL AGUA DE ENTRADA DEL EVAPORADOR (EWT)	68
	7.9 Vis	sión general de advertencias del circuito	69
	7.9.1	FALLA DE BOMBEADO (en la pantalla: PdFail)	69
	7.9.2	Visión general de los eventos	69
	7.9.3	Visión general de los eventos de la unidad	70
	7.9.4	RESTAURACIÓN DE LA ALIMENTACIÓN DE LA UNIDAD	70
	7.10 Vis	sión general de los eventos del circuito	70
	7.10.1	PRESIÓN BAJA DEL EVAPORADOR - DETENIDO	71
	7.10.2	PRESIÓN BAJA DE EVAPORADOR - DESCARGA	71
	7.10.3	PRESIÓN ALTA DEL CONDENSADOR - DETENIDO	72
	7.10.4	PRESIÓN ALTA DEL CONDENSADOR - DESCARGA	72
8	Apénd	ice C: Diagnóstico básico del sistema de control	74
	8.1 LE	D de módulo del controlador	74
	8.2 LE	D de módulo de extensión	75
	83 IF	D de módulo de comunicación	75

1 Introducción

Este manual incluye información sobre la configuración, el funcionamiento, la localización de fallas y el mantenimiento de los enfriadores refrigerados con aire Daikin con 1, 2 y 3 circuitos mediante el controlador Microtech III.

Información para la Identificación de Riesgos

⚠PELIGRO

Las señales de peligro indican una situación de riesgo que puede resultar en la muerte o en heridas graves de no ser evitada.

ADVERTENCIA

Las señales de advertencia indican situaciones de riesgo potencial, que pueden resultar en daños materiales, heridas personales graves o la muerte si no se evitan.

△PRECAUCIÓN

Las señales de precaución indican situaciones de riesgo potencial, que pueden resultar en heridas personales o daños en el equipo si no se evitan.

Versión de software: Este manual cubre las unidades con versión de software XXXXXXX. Si desea consultar el número de la versión de software, seleccione la opción de menú "Acerca del enfriador" sin contraseña. Luego, presione la tecla MENÚ para regresar a la pantalla Menú.

Versión BSP mínima: 9,22

ADVERTENCIA

Riesgo de descarga eléctrica: puede causar heridas personales o daños en el equipo. Este equipo debe conectarse a tierra correctamente. Las conexiones y reparaciones del panel de control MicroTech III deben realizarlas únicamente personal especializado en el funcionamiento de este equipo.

⚠ PRECAUCIÓN

Componentes sensibles a la estática. Una descarga de estática durante la manipulación de las placas de circuitos electrónicos puede causar daños en los componentes. Elimine cualquier carga eléctrica estática tocando el metal crudo que se encuentra dentro del panel de control antes de realizar cualquier reparación. Nunca desenchufe cables, bloques terminales de placas de circuitos o enchufes de alimentación mientras el panel recibe alimentación.

NOTA

Este equipo genera, utiliza y puede irradiar energía de radiofrecuencia, y si no se instala y se utiliza de acuerdo a las indicaciones de este manual, puede causar interferencia en las comunicaciones de radio. La operación de este equipo en

un área residencial puede causar interferencia nociva, en cuyo caso el usuario deberá corregir la interferencia por cuenta propia. Daikin no se hace responsable de ningún tipo de interferencia o de la corrección de la misma.

Límites operativos:

- Temperatura ambiente máxima en reposo, 57 °C
- Temperatura ambiente mínima en funcionamiento (estándar), 2 °C
- Temperatura ambiente mínima en funcionamiento (con control opcional de ambiente bajo), -20 °C
- Temperatura del agua refrigerada de salida, 4 °C a 15 °C
- Temperaturas de los fluidos refrigerados de salida (con anticongelante): 3 °C a -8 °C. No está permitida la descarga con temperaturas de salida de fluidos menores de -1 °C.
- Rango operativo Delta-T, 4 °C a 8 °C
- Temperatura máxima del fluido de entrada en funcionamiento, 24 °C
- Temperatura máxima del fluido de entrada en estado apagado, 38 °C

1.1 Funciones del controlador

Lectura de los siguientes valores de temperatura y presión:

Temperatura del agua refrigerada saliente y entrante

Temperatura y presión del refrigerante saturado del evaporador

Temperatura y presión del refrigerante saturado del condensador

Temperatura del aire exterior

Temperaturas de la línea de succión y la línea de descarga – sobrecalentamiento calculado para las líneas de succión y descarga

Control automático de las bombas de agua refrigerada (principal y de reserva). El control enciende una de las bombas (según las horas más bajas de accionamiento) cuando la unidad se habilita para operar (no necesariamente en funcionamiento por pedido de refrigeración) y cuando la temperatura del agua alcanza un punto de congelamiento posible.

Dos niveles de protección contra el cambio no autorizado de puntos de ajuste y otros parámetros de control.

Advertencias y diagnósticos de fallas para informar a los operadores sobre situaciones de advertencia y falla en lenguaje corriente. Todos los eventos y las alarmas se marcan con fecha y hora para poder identificar cuándo ocurrió la condición de falla. Además, las condiciones de operación existentes previas a un apagado por alarma pueden restaurarse para ayudar a determinar la causa del problema.

Hay disponibles veinticinco alarmas previas y condiciones de operación relacionadas.

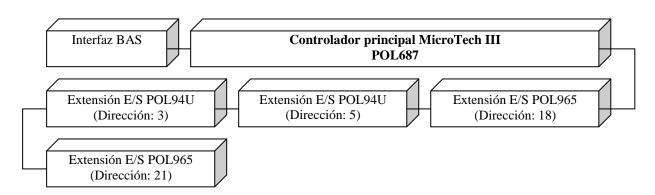
Señales remotas de entrada para el reinicio del agua refrigerada, la limitación de demanda y la activación de la unidad.

El modo de prueba permite al técnico de servicio controlar manualmente las salidas de los controladores y puede ser útil para verificar el sistema.

Capacidad de comunicación con sistemas de automatización de edificios (BAS, Building Automation System) a través de protocolos estándar LonTalk®, Modbus®, o BACnet® para todos los fabricantes de sistemas BAS.

Transductores de presión para una lectura directa de las presiones del sistema. Control preventivo de condiciones de presión baja del evaporador y de temperatura y presión alta de descarga para tomar acciones correctivas antes de que ocurra una falla.

2 Descripción general del sistema


2.1 Componentes de comunicación

La unidad utilizará varios componentes de comunicación y eso dependerá de cuántos compresores haya en la unidad. Los componentes a utilizar se definen en la tabla siguiente. También el diagrama siguiente muestra cómo se conectan dichos módulos.

Commonantos	Dinagaión	Número de compresores				
Componentes	Dirección	2	3	4	5	6
Interfaz BAS	_	X	X	X	X	X
(Lon, BacNet, Modbus)		74	A	A	A	Λ
POL687		X	X	X	X	X
(Controlador principal MTIII)	_	Λ	Λ	Λ	Λ	Λ
POL965	18	X	X	X	X	X
(Módulo de extensión HP E/S)	10	Λ	Λ	Λ	Λ	Λ
POL94U	3	X	X	X	X	X
(Módulo de extensión EXV 1 E/S)	3	Λ	Λ	Λ	Λ	Λ
POL94U	5	N/R	N/R	X	X	X
(Módulo de extensión EXV 2 E/S)	3	IN/IX	1 N / I X	Λ	Λ	Λ
POL965	21	0.007	0.007	0.007	0.007	0.00.7
(Módulo de extensión OPZ 2 E/S)	21	opz	opz	opz	opz	opz

Nota: "x" significa que una unidad utilizará ese componente.

A continuación se muestra el diagrama de muestra de conexión de componentes para una unidad de 2 circuitos, configuración "W".

2.2 Mapa E/S de la unidad

La tabla siguiente representa la conexión física desde el hardware del controlador hasta el componente físicamente en la máquina.

Dirección	CON	NTROLAI	OOR		Bomba de calor EWYQ-F-
	Modelo	Sección	Tipo E/S	Tipo E/S	Valor
	POL687	T2	Do1	Do	Cir 1 Comp 1
	POL687		Do2	Do	Cir 1 Comp2
	POL687	T3	Do3	Do	Cir 2 Comp 1
	POL687		Do4	Do	Cir 2 Comp 2
	POL687	T4	Do5	Do	Cir 1 Ventilador 1
	POL687	14	Do6	Do	Cir 1 Ventilador 2

POL687 Do 7 Do Cir 1 Ventilador 3 POL687 Do8 Do Cir 2 Ventilador 3 POL687 Do9 Do Cir 2 Ventilador 3	-
POI 687 Dog Do Cir 2 Ventilador	1
POL687 T5 Do 10 Do Cir 2 Ventilador 3	3
POI 687 Di Interruptor de la uni	dad
POL687 T6 Di6 Di Doble punto ajust	
POL687 AII Ai EWT evap	
POL687 T7 AI2 Ai LWT evap	
POL687 AI3 Ai Temperatura ambiente e	exterior
POL687 X1 Ai Cir 1 pres. succió	
POI 687 Y2 Ai Presión descarga ci	
POL687 T8 X3 Ai Temp succión cir	
POL687 X4 Di Protección cir 1 con	
POL687 X5 Ai Cir 2 pres. succió	
POL 687 Y6 Ai Presión descarga ci	
POL687 T9 X7 Ai Temp succión cir	
POL687 X8 Do Alarma de la unida	
POL 687 Dil Di Protección cir 1 con	
POL687 T10 Di2 Di Interruptor de flujo de	
POI 687 Di3 Di Interruptor cir 1	*
POL687 T10 Di4 Di Interruptor cir 2	
POL687 T12 Modbus	
POL687 T13 KNX	
POL94U T1 Do1 Do Cir 1 Comp 3	
POL94U T2 Di1 Di Interruptor de alta presión me	ecánica cir 1
POL94U X1 Di Protección cir 1 com	
POL94U T3 X2 Do Cir 1 Ventilador	
3 POL94U X3 Di Protección cir 2 con	np 1
POL94U M1+	
POL94U M1-	
POL94U T4 M2+	
POL94U M2-	
POL94U T1 Do1 Do Cir 2 Comp 3	
POL94U T2 Di1 Di Interruptor de alta presión me	ecánica cir 2
POL94U X1 Di Protección cir 2 con	np 2
POL94U T3 X2 Do Cir 2 Ventilador 4	4
5 POL94U X3 Di Protección cir 2 con	np 3
POL94U M1+	
POL94U T4 M1-	
POL94U M2+	
POL94U M2-	
POL965 Dol Válvula solenoide de línea de	_
POL965 T1 Do2 Do Válvula solenoide de línea de	líquido cir 2
POL965 Do OCUPADA (bomba de recuper	ración de calor)
POL965 Do4 No utilizada	
POL965 T2 Do5 Do Bomba evap 1	
POL965 Do Bomba evap 2	
POL965 T3 Di1 Di Punto de ajuste dol	ole
POL965 XI Di Alarma externa	
POL965 T4 X2 Ai PVM	
POL965 X3 Ai Límite de demand	la
POL965 X4 Di No utilizada	
POL965 X5 Ao Cir 1 ventilador V	fd
POL965 T5 X6 Ao Cir 2 ventilador V	fd
POL965 X7 Ai Reinicio de temperatura	saliente

	POL965		X8	Di	No utilizada
	POL965	T1	Do1	Do	Calentador de drenaje de agua (kit norte UE)
	POL965		Do2	Do	Válvula 4 vías cir 1
	POL965		Do3	Do	No utilizada
	POL965		Do4	Do	Válvula 4 vías cir 1
	POL965	T2	Do5	Do	Válvula de purga de gas circ 1
	POL965		Do6	Do	Válvula de purga de gas circ 2
21	POL965	Т3	Di1	Di	Interruptor de bomba de calor
21	POL965	T4	X1		No utilizada
	POL965		X2		No utilizada
	POL965		X3	Ai	Temperatura descarga cir 1
	POL965		X4	Ai	Temperatura descarga cir 2
	POL965		X5		No utilizada
	POL965	T5	X6		No utilizada
	POL965		X7		No utilizada
	POL965		X8		No utilizada

2.3 Modo de la unidad

La unidad EWYQ-F- tiene un modo de funcionamiento diferente, como se muestra a continuación:

- **FRÍO**, la unidad funciona sólo como enfriador y el punto de ajuste mínimo es 4,0 °C (39,2°F);
- **FRÍO con GLICOL**, la unidad funciona <u>sólo</u> como enfriador y el punto de ajuste mínimo es -15,0 °C (5°F), con glicol:
- **FRÍO/HIELO con GLICOL**, la unidad funciona <u>sólo</u> como enfriador y el punto de ajuste mínimo es -15,0 °C (5°F), con glicol;
- HIELO, la unidad funciona sólo como enfriador y el punto de ajuste mínimo es -15,0 °C (5°F), con

3 Funciones de la unidad

glicol;

3.1 El modo de la unidad CALOR

La unidad EWYQ-F- tiene un modo de funcionamiento diferente, como se muestra a continuación:

- FRÍO, la unidad funciona sólo como enfriador y el punto de ajuste mínimo es 4,0 °C (39,2°F);
- **FRÍO** con GLICOL, la unidad funciona <u>sólo</u> como enfriador y el punto de ajuste mínimo es -15,0 °C (5°F), con glicol;
- **FRÍO/HIELO con GLICOL**, la unidad funciona <u>sólo</u> como enfriador y el punto de ajuste mínimo es -15,0 °C (5°F), con glicol;
- HIELO, la unidad funciona sólo como enfriador y el punto de ajuste mínimo es -15,0 °C (5°F);
- **CALOR** la unidad funciona <u>sólo</u> como bomba de calor, el punto de ajuste máximo es 50°C (122°F), y funciona como enfriador de la misma manera que el modo **FRÍO**;

3.2 El modo de la unidad CALOR / FRÍO con GLICOL

La unidad EWYQ-F- tiene un modo de funcionamiento diferente, como se muestra a continuación:

- **FRÍO**, la unidad funciona sólo como enfriador y el punto de ajuste mínimo es 4,0 °C (39,2°F);
- **FRÍO con GLICOL**, la unidad funciona <u>sólo</u> como enfriador y el punto de ajuste mínimo es -15,0 °C (5°F), con glicol;
- **FRÍO/HIELO con GLICOL**, la unidad funciona <u>sólo</u> como enfriador y el punto de ajuste mínimo es -15,0 °C (5°F), con glicol;
- **HIELO**, la unidad funciona sólo como enfriador y el punto de ajuste mínimo es -15,0 °C (5°F);
- **CALOR** la unidad funciona <u>sólo</u> como bomba de calor, el punto de ajuste máximo es 50°C (122°F), y funciona como enfriador de la misma manera que el modo **FRÍO con GLICOL**;

3.3 El modo de la unidad CALOR / HIELO con GLICOL

La unidad EWYQ-F- tiene un modo de funcionamiento diferente, como se muestra a continuación:

- FRÍO, la unidad funciona sólo como enfriador y el punto de ajuste mínimo es 4,0 °C (39,2°F);
- **FRÍO con GLICOL**, la unidad funciona <u>sólo</u> como enfriador y el punto de ajuste mínimo es -15,0 °C (5°F), con glicol;
- **FRÍO/HIELO con GLICOL**, la unidad funciona <u>sólo</u> como enfriador y el punto de ajuste mínimo es -15,0 °C (5°F), con glicol;
- HIELO, la unidad funciona sólo como enfriador y el punto de ajuste mínimo es -15,0 °C (5°F);
- como bomba de calor, el punto de ajuste máximo es 50°C (122°F), y funciona como enfriador de la misma manera que el modo **HIELO con GLICOL**;
- **PRUEBA**, la unidad no está habilitada para iniciar automáticamente.

Si se selecciona el modo CALOR, para pasar de la bomba de calor al enfriador es necesario utilizar el interruptor manual de la caja de conexiones, cuando el interruptor de la unidad está en posición de apagado.

3.4 Cálculos

Los cálculos en esta sección se utilizan en lógica de control de nivel de la unidad o en lógica de control a través de todos los circuitos.

3.4.1 Delta T del evaporador

El delta T del agua del evaporador se calcula como el valor absoluto de la temperatura del agua entrante menos la temperatura del agua saliente.

3.4.2 Pendiente de LWT

La pendiente de LWT se calcula de tal manera que la pendiente representa el cambio estimado de LWT en un marco de tiempo de un minuto.

3.4.3 Índice de descenso

El valor de la pendiente calculado anteriormente será un valor negativo a medida que la temperatura del agua desciende en modo frío o en modo calor..

En modo **FRÍO**, el índice de descenso se calcula invirtiendo el valor de pendiente y limitándolo a un valor mínimo de 0°C/min:

En modo **CALOR**, el índice de descenso se calcula utilizando el valor de pendiente y limitándolo a un valor mínimo de 0°C/min:

3.4.4 Error de LWT

El error de LWT se calcula como:

LWT – LWT objetivo

3.4.5 Capacidad de la unidad

La capacidad de la unidad se basará en las capacidades estimadas del circuito.

La capacidad de la unidad es el número de compresores en funcionamiento (en los circuitos que no están bombeando) dividido entre el número de compresores de la unidad *100.

3.4.6 Banda de control

La banda de control define la banda en la que la capacidad de la unidad no aumentará o se reducirá.

La banda de control en modo **FRÍO** se calcula de la manera siguiente:

Dos unidades de compresor: Banda de control = punto de ajuste delta T evap nominal * 0,50 Tres unidades de compresor: Banda de control = punto de ajuste delta T evap nominal * 0,50 Cuatro unidades de compresor: Banda de control = punto de ajuste delta T evap nominal * 0,30 Seis unidades de compresor: Banda de control = punto de ajuste delta T evap nominal * 0,20

La banda de control en modo **CALOR** se calcula de la manera siguiente:

Dos unidades de compresor: Banda de control = punto de ajuste delta T cond nominal * 0,50 Tres unidades de compresor: Banda de control = punto de ajuste delta T cond nominal * 0,50

Cuatro unidades de compresor: Banda de control = punto de ajuste delta T cond nominal * 0,30 Seis unidades de compresor: Banda de control = punto de ajuste delta T cond nominal * 0,20

3.4.7 Temperaturas de fase

En modo **FRÍO**:

Si la unidad está configurada para el uso sin glicol:

Cuando la LWT objetivo es más de la mitad de la banda de control por encima 3,9°C (39,0°F)

Temperatura superior de fase = LWT objetivo + (banda de control/2)

Temperatura inferior de fase = LWT objetivo – (banda de control/2)

Si la LWT objetivo es menos de la mitad de la banda de control por encima de 3,9°C (39,0°F)

Temperatura inferior de fase = LWT objetivo – (LWT objetivo - 3.9° C)

Temperatura superior de fase = LWT objetivo + banda de control – (LWT objetivo - 3,9°C)

Si la unidad se configura para el uso con glicol, las temperaturas de fase del compresor se calculan de la manera siguiente:

Temperatura superior de fase = LWT objetivo + (banda de control/2)

Para todos los casos, la temperatura de encendido o apagado se calcula de la manera siguiente:

Temperatura de encendido = Temperatura superior de fase + delta T de encendido.

Temperatura de apagado = Temperatura inferior de fase – delta T de apagado.

En modo CALIENTE:

 $Temperatura\ superior\ de\ fase = LWT\ objetivo\ \hbox{- (banda de control/2)}$

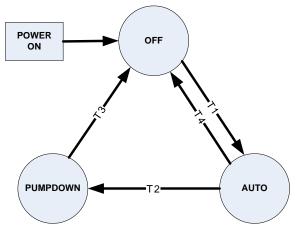
Temperatura inferior de fase = LWT objetivo + (banda de control/2)

Para todos los casos, la temperatura de encendido o apagado se calcula de la manera siguiente:

Temperatura de encendido = Temperatura superior de fase - delta T de encendido.

Temperatura de apagado = Temperatura inferior de fase + delta T de apagado.

3.5 Estados de la unidad


La unidad siempre estará en uno de los tres estados, que son los mismos con la unidad funcionando como enfriador o como bomba de calor:

Apagado – La unidad no está habilitada para funcionar (los compresores no están habilitados para ponerse en marcha)

Auto – La unidad está habilitada para funcionar (los compresores están habilitados para ponerse en marcha si es necesario)

Bombeado - La unidad está realizando un apagado normal

Las transiciones entre estos estados se muestran en el diagrama siguiente. Estas transiciones son las únicas causas de un cambio de estado

T1 - de apagado a Auto

Se deben cumplir todas las condiciones siguientes para pasar del estado de apagado:

El interruptor de la unidad está ajustado en posición Loc o Rem. Si está en Rem, el botón encendido/apagado del mando a distancia está en encendido

Ninguna alarma de unidad

Al menos un circuito está habilitado para ponerse en marcha

Si el modo de la unidad está en Hielo, la Demora de Hielo no está activa

Ningún cambio en los ajustes de la configuración

T2 - De Auto a Bombeo

Se debe cumplir cualquiera de las condiciones siguientes para pasar del estado AUTOMÁTICO a BOMBEO:

El interruptor de la unidad está en Loc y la unidad está deshabilitada por HMI

La LWT se alcanza en cualquier modo de la unidad

Alarma de bombeo de la unidad activa

Interruptor de la unidad movido de Loc o Rem a apagado

T3 – De bombeo a apagado

Se debe cumplir cualquiera de las condiciones siguientes para pasar del estado BOMBEO a APAGADO:

Alarma de parada rápida de la unidad activa

Todos los circuitos han completado el bombeo

T4 - De Auto a apagado

Se debe cumplir cualquiera de las condiciones siguientes para pasar del estado AUTOMÁTICO a APAGADO:

Alarma de parada rápida de la unidad activa

Ningún circuito está habilitado y no hay compresores funcionando

3.6 Estado de la unidad

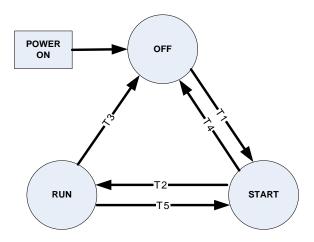
El estado de la unidad se determina por las condiciones que aparecen en la siguiente tabla:

Estado	Condiciones				
Automático	Unidad funcionado				
Retraso del arranque del protector del motor	Unidad aún en espera del temporizador de reciclaje				
Apagado: Tempor. modo hielo	La unidad se ve obligada a parar por el temporizador de hielo				
Apagado: Bloqueo de OAT	La unidad no se pone en marcha porque la temperatura es demasiado baja				
Apagado: Todos los circuitos desactivados	Todos los interruptores de circuitos están en posición de apagado				
Apagado: Alarma de la unidad	La unidad está apagada y no puede arrancar debido a una alarma activada.				
Apagado: Teclado desactivado	La unidad se desactiva con el teclado				
Apagado: Interruptor remoto	La unidad se desactiva con el interruptor remoto				
Apagado: BAS desactivado	La unidad se desactiva con el supervisor de red				
Apagado: Interruptor de la unidad	La unidad se desactiva con el interruptor local				
Apagado: Modo de prueba	La unidad está en modo de prueba				
Automático: En espera de carga	La unidad es capaz de funcionar, pero no hay ningún compresor funcionando para la termorregulación				
Automático: Recirc. del evaporador	La unidad es capaz de funcionar, pero el temporizador de reciclaje del evaporador está activo				
Automático: En espera de flujo	La unidad es capaz de funcionar, pero está esperando a que se cierre el interruptor de flujo				
Bombeo	La unidad está realizando el bombeo				
Automático: Subida máxima limitada	La unidad funciona, pero el índice de descenso de la LWT es demasiado alta				
Automático:Límite de capac. de la unidad	La unidad funciona y se alcanza el límite de capacidad				
Apagado: Cambio de config., Reiniciar	Algunos parámetros han cambiado, por lo que es necesario reiniciar el sistema				
Descongelación	Unidad en descongelación				

3.7 Demora de puesta en marcha tras encendido

Tras encender la unidad, los protectores del motor pueden no funcionar bien durante un máximo de 150 segundos. Por tanto, tras encender el control, ningún compresor se puede poner en marcha durante 150 segundos. Además, las entradas de protección del motor se ignoran durante este tiempo con el fin de evitar activar una falsa alarma.

3.8 Control de la bomba del evaporador


Independientemente de si la unidad funciona como enfriador o como bomba de calor, el control de la bomba del evaporador tiene tres modos: .:

Apagado: ninguna bomba encendida.

Arranque: bomba encendida, el circuito de agua está en etapa de recirculación.

Arranque: bomba encendida, el circuito de agua ha recirculado y los circuitos pueden ponerse en marcha si es necesario.

La transición entre estos estados se muestra en el diagrama siguiente.

T1 – de apagado a arranque

Requiere cualquiera de las siguientes condiciones

El estado de la unidad es Automático

La LWT es menor al punto de ajuste de Congelamiento del evaporador -0.6°C (1.1°F) y la falla de sensor de LWT no está activa

La temperatura de congelamiento es menor al punto de ajuste de Congelamiento del evaporador – 0,6°C (1,1°F) y la falla de sensor de temperatura de congelamiento no está activa

T2 – de arranque a funcionamiento

Requiere la siguiente condición

El interruptor de flujo se cierra durante un tiempo superior al punto de ajuste del tiempo de recirculación del evaporador

T3 – de funcionamiento a apagado

Requiere todas las siguientes condiciones

El estado de la unidad es Apagado

La LWT es mayor al punto de ajuste de Congelamiento del evaporador o la falla de sensor de LWT está activa

T4 – de arranque a apagado

Requiere todas las siguientes condiciones

El estado de la unidad es Apagado

La LWT es mayor al punto de ajuste de Congelamiento del evaporador o la falla de sensor de LWT está activa

3.9 Configuración de la bomba del evaporador

La unidad puede controlar uno o dos bombas de agua. El siguiente punto de ajuste se utiliza para gestionar el modo de funcionamiento:

#1 únicamente – la bomba 1 se utiliza siempre

#2 únicamente – la bomba 2 se utiliza siempre

Automático – la bomba principal es la que tiene la menor cantidad de horas de funcionamiento; la otra se utiliza como respaldo

#1 principal –la bomba 1 se utiliza normalmente, y la bomba 2 como respaldo

#2 principal –la bomba 2 se utiliza normalmente, y la bomba 1 como respaldo

3.9.1 Fase de bomba principal/en espera

La bomba que ha sido designada como principal arranca primero.

Si el estado del evaporador es **arranque** por un período de tiempo mayor a la recirculación máxima y no hay flujo, la bomba principal se apaga y arranca la bomba en espera.

Cuando el evaporador está en estado de **funcionamiento**, si se pierde el flujo por más de la mitad del valor de prueba de flujo, la bomba principal se apaga y arranca la bomba en espera.

Una vez que arranca la bomba en espera, si no se puede lograr un flujo en el estado de **arranque** del evaporador o se pierde flujo en el estado de **funcionamiento** del evaporador, se aplica la lógica de alarma de pérdida de flujo.

3.9.2 Control automático

Si selecciona el control de bomba automático, aún se utiliza la lógica de bomba principal/en espera mencionada anteriormente.

Cuando el evaporador no está en estado de **funcionamiento**, se comparan las horas de funcionamiento de las bombas. La bomba que tenga la menor cantidad de horas de funcionamiento es designada bomba principal.

3.10 Objetivo de LWT

El objetivo de LWT varía en función de las configuraciones y las entradas.

El objetivo de LWT básico se selecciona de la manera siguiente:

	Objetivo de LWT FRÍO 1	Objetivo de LWT FRÍO 2	Objetivo de LWT HIELO	Objetivo de LWT CALOR 1	Objetivo de LWT CALOR 2
FRÍO	X	X			
FRÍO con GLICOL	X	X			
FRÍO/HIELO con GLICOL	X	X	X		
HIELO	X	X	X		
CALOR	X	X		X	X
CALOR/FRÍO con GLICOL	X	X		X	X
CALOR/HIELO con GLICOL	X	X	X	X	X

3.10.1 Reinicio de temperatura del agua saliente (LWT)

El objetivo LWT básico puede reiniciarse si la unidad está en modo Frío y el reinicio de LWT está habilitado mediante el punto de ajuste.

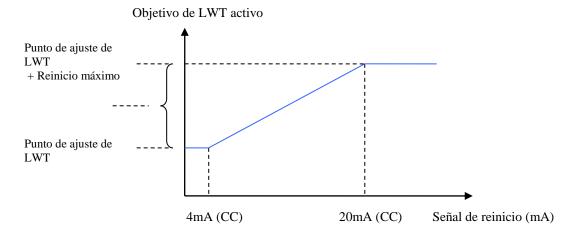
La cantidad de reinicio se ajusta basándose en la entrada de reinicio de 4 a 20 mA. El reinicio es 0° si la señal de reinicio es menor o igual a 4 mA. El reinicio es 5,56°C (10,0°F) si la señal de reinicio es igual o mayor de 20 mA. El valor de reinicio varía linealmente entre estos extremos si la señal de reinicio está dentro de los 4 y los 20 mA.

Cuando la cantidad de reinicio aumenta, el objetivo LWT activo cambia a razón de 0,1 °C cada 10 segundos. Cuando el reinicio activo disminuye, el objetivo LWT activo cambia de una sola vez.

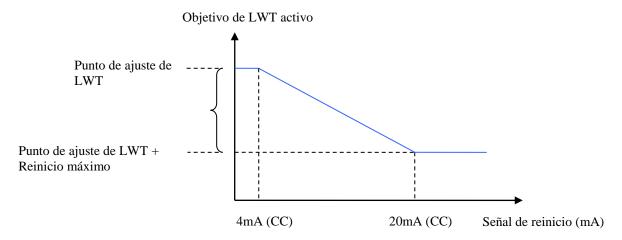
Después de aplicar el reinicio, el objetivo de LWT no puede superar el valor de 15,56°C (60°F).

3.10.2 Anulación de temperatura del agua saliente (LWT)

El objetivo de LWT básico se puede anular automáticamente si la unidad está en modo calor y la temperatura ambiente exterior


(OAT) se reduce a menos de -2°C, de la manera siguiente:

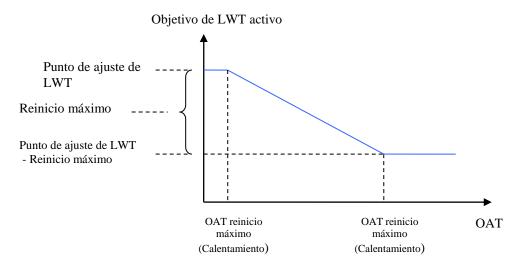
Este control automático garantiza que los compresores funcionen dentro el entorno de funcionamiento seguro y previene la rotura del motor.


3.10.3 Reinicio de 4-20mA

La variable de agua saliente activa se ajusta mediante la entrada análoga de reinicio de 4 a 20mA.

--- Para enfriamiento ---

--- Para calentamiento ---


3.10.4 Reinicio de OAT

La variable de agua saliente activa se ajusta por medio de la OAT.

--- Para enfriamiento ---

Objetivo de LWT activo Punto de ajuste de LWT + Reinicio máximo Reinicio máximo --- Punto de ajuste de LWT OAT reinicio máximo (Enfriamiento) OAT reinicio de arranque (Enfriamiento)

--- Para calentamiento ---

Nombre	Clase	Unidad	Predeterminado	Mín.	Máx.
OAT reinicio máximo (Enfriamiento)	Unidad	°C	15,0	10,0	30,0
OAT reinicio de arranque (Enfriamiento)	Unidad	°C	23,0	10,0	30,0
OAT reinicio máximo (Calentamiento)	Unidad	°C	23,0	10,0	30,0
OAT reinicio máximo (Calentamiento)	Unidad	°C	15,0	10,0	30,0

3.11 Control de capacidad de la unidad

Esta sección describe el procedimiento de control de capacidad de la unidad. Todos los límites de capacidad de la unidad descritos en las secciones siguientes se deben aplicar de la manera descrita.

3.11.1 Fase de compresor en modo Frío

El primer compresor de la unidad arranca cuando la LWT del evaporador es mayor que la temperatura de arranque y el tiempo de reciclaje del evaporador ha terminado.

Los compresores adicionales se pueden poner en marcha cuando la LWT del evaporador es mayor que la temperatura de fase alta y la demora de fase alta no está activa.

Cuando hay varios compresores en funcionamiento, uno de ellos se apaga si la LWT del evaporador es menor que la temperatura de fase baja y la demora de fase baja no está activa.

Todos los compresores en funcionamiento se apagarán cuando el LWT del evaporador sea inferior a la temperatura de apagado.

3.11.2 Fase de compresor en modo caliente

El primer compresor de la unidad arranca cuando la LWT del evaporador es menor que la temperatura de arranque Los compresores adicionales se pueden poner en marcha cuando la LWT del evaporador es menor que la temperatura de fase alta y la demora de fase alta no está activa.

Cuando hay varios compresores en funcionamiento, uno de ellos se apaga si la LWT del evaporador es menor que la temperatura de fase baja y la demora de fase baja no está activa.

Todos los compresores en funcionamiento se apagarán cuando el LWT del evaporador sea superior a la temperatura de apagado.

3.11.3 Demora de fase de los compresores

Tanto en modo frío como en calor, la secuencia tiene los siguientes tiempos de demora.

3.11.3.1Demora de fase alta

Transcurre una cantidad mínima de tiempo, definida por el punto de ajuste de la demora de fase alta, entre los aumentos de la fase de capacidad. La demora solo se aplica si hay al menos un compresor en funcionamiento. Si el primer compresor arranca e inmediatamente se apaga por algún motivo, otro compresor puede arrancar sin que pase este tiempo mínimo.

3.11.3.2Demora de fase baja

Transcurre una cantidad mínima de tiempo, definida por el punto de ajuste de la demora de fase baja, entre las reducciones de la fase de capacidad. Esta demora no se aplica cuando la LWT cae por debajo de la temperatura de apagado (la unidad se apaga inmediatamente).

Nombre	Unidad/Cir	Predeter	eter Escala		
	cuito	minado	mín	máx	delta
Demora de fase alta	Unidad	60 s	60 s	300 s	1
Demora de fase baja	Unidad	60 s	60 s	300 s	1

3.11.3.3Fase de compresor en modo Hielo

El primer compresor de la unidad arranca cuando la LWT del evaporador es mayor que la temperatura de arranque. Los compresores adicionales se ponen en marcha lo más rápidamente posible con respecto a la demora de fase alta. La unidad se apaga cuando la LWT del evaporador es inferior que el objetivo de LWT.

3.11.3.4Demora de fase alta

Este modo utiliza una demora de fase fija de un minuto entre los arranques de los compresores.

3.11.3.5Secuencia de fase

Esta sección define qué compresor es el siguiente en arrancar o detenerse. En general, los compresores con menos cantidad de arranques suelen arrancar primero, y los compresores con más horas de funcionamiento se detienen primero.

Si es posible, los circuitos se equilibrarán durante la fase. Si un circuito no está disponible por algún motivo, el otro circuito estará habilitado para lanzar todos los compresores. Durante la fase baja, se dejará activado un compresor en cada circuito hasta que cada circuito tenga sólo un compresor funcionando.

3.11.3.6Siguiente en arrancar

Si ambos circuitos tienen un número igual de compresores funcionando o un circuito no tiene compresores disponibles para arrancar:

- el compresor disponible con menos arranques será el próximo en arrancar
- si los arranques son iguales, el que tenga menos horas de funcionamiento será el próximo en arrancar
- si las horas de funcionamiento son iguales, el de número inferior será el próximo en arrancar

Si los circuitos tienen un número diferente de compresores funcionando, el compresor siguiente en arrancar será el del circuito con menos compresores funcionando si tiene al menos un compresor disponible para arrancar. En ese circuito:

• el compresor disponible con menos arranques será el próximo en arrancar

- si los arranques son iguales, el que tenga menos horas de funcionamiento será el próximo en arrancar
- si las horas de funcionamiento son iguales, el de número inferior será el próximo en arrancar

3.11.3.7Siguiente en detenerse

Si ambos circuitos tienen un número igual de compresores funcionando:

- el compresor en funcionamiento con más horas de funcionamiento será el próximo en detenerse
- si las horas de funcionamiento son iguales, el que tenga más arranques será el próximo en detenerse
- si los arranques son iguales, el de número inferior será el próximo en detenerse

Si los circuitos tienen un número diferente de compresores funcionando, el compresor siguiente en detenerse será el del circuito con más compresores funcionando. En ese circuito:

- el compresor en funcionamiento con más horas de funcionamiento será el próximo en detenerse
- si las horas de funcionamiento son iguales, el que tenga más arranques será el próximo en detenerse
- si los arranques son iguales, el de número inferior será el próximo en detenerse

3.12 Anulaciones de la capacidad de la unidad

Sólo en modo de enfriamiento o calentamiento, la capacidad total de la unidad puede limitarse. Puede haber varios límites activos en un momento determinado, y el límite más bajo siempre se utiliza en el control de capacidad de la unidad.

3.12.1 Límite de demanda

La capacidad máxima de la unidad puede limitarse mediante una señal de 4 a 20 mA en la entrada análoga de Límite de demanda. Esta función solo se activa si el punto de ajuste de opción límite de demanda está ACTIVADO. La fase de capacidad máxima de la unidad se determina como se muestra en las tablas siguientes:

Dos compresores:

Señal de límite de demanda (%)	Límite de demanda (mA)	Límite de fase
Límite de demanda ≥ 50%	Límite de demanda ≥ 12 mA	1
Límite de demanda < 50%	Límite de demanda < 12 mA	Ninguno

Tres compresores:

Señal de límite de demanda (%)	Límite de demanda (mA)	Límite de fase
Límite de demanda ≥ 66,6%	Límite de demanda ≥ 14,6 mA	1
66,6% > Límite de demanda ≥ 33,3%	14,6 mA > Límite de demanda ≥ 9,3 mA	2
Límite de demanda < 33,3%	Límite de demanda < 9,3 mA	Ninguno

Cuatro compresores:

Señal de límite de demanda (%)	Límite de demanda (mA)	Límite de fase
Límite de demanda ≥ 75%	Límite ≥ 16 mA	1
$75\% > Limite de demanda \ge 50\%$	$16 \text{ mA} > \text{Limite } \ge 12 \text{ mA}$	2
50% > Límite de demanda ≥ 25%	12 mA > Límite ≥ 8 mA	3
Límite de demanda < 25%	Límite de demanda < 8 mA	Ninguno

Seis compresores:

Señal de límite de demanda (%)	Límite de demanda (mA)	Límite de fase
Límite de demanda ≥ 83,3%	Límite de demanda ≥ 17,3 mA	1
$83,3\% > L$ ímite de demanda $\geq 66,7\%$	17,3 mA > Límite de demanda ≥ 14,7 mA	2
66,7% > Límite de demanda ≥ 50%	14,7 mA > Límite de demanda ≥ 12mA	3
50% > Límite de demanda ≥ 33,3%	12 mA > Límite de demanda ≥ 9,3 mA	4
$33,3\% > L$ ímite de demanda $\geq 16,7\%$	9,3 mA > Límite de demanda ≥ 6,7 mA	5
Límite de demanda <16,7%	Límite de demanda <6,7 mA	Ninguno

3.12.2 Límite de red

La capacidad máxima de la unidad puede limitarse mediante una señal de red. Esta función sólo está habilitada si la fuente de control está ajustada en la red y el punto de ajuste de opción de límite de red está ajustado en ACTIVO. La fase de capacidad máxima de la unidad se basa en el valor límite de red recibido del BAS y se determina como se muestra en las tablas siguientes:

Dos compresores:

Límite de red	Límite de fase
Límite de red ≥ 100%	Ninguno
Límite de red < 50%	1

Tres compresores:

Límite de red	Límite de fase
Límite de red ≥ 100%	Ninguno
$66,6\% > Limite de red \ge 33,3\%$	2
Límite de red < 33,3%	1

Cuatro compresores:

Límite de red	Límite de fase
Límite de red ≥ 100%	Ninguno
100% > Límite de red ≥ 75%	3
75% > Límite de red ≥ 50%	2
Límite de red < 50%	1

Seis compresores:

Límite de red	Límite de fase
Límite de red ≥ 100%	Ninguno
100% > Límite de red ≥ 83,3%	5
83,3% > Límite de red ≥ 66,7%	4
66,7% > Límite de red ≥ 50%	3
50% > Límite de red ≥ 33,3%	2
Límite de red < 33,3%	1

3.12.3 Índice máximo de subida/bajada de LWT

El índice máximo al que la temperatura del agua saliente puede caer estará limitado por el punto de ajuste del índice máximo de bajada sólo cuando el modo de la unidad sea frío; en cambio, en modo calor, el índice máximo al que la temperatura del agua saliente puede subir estará limitado por el índice máximo de subida.

Si el índice supera este punto de ajuste, no se pondrán en marcha otros compresores hasta que el límite de subida o de bajada sea inferior al punto de ajuste tanto en modo frío como en modo calor.

Los compresores en funcionamiento no se detendrán como resultado de la superación del índice máximo de subida o bajada.

3.12.4 Límite superior de temperatura ambiente

En las unidades configuradas con conexiones eléctricas de un solo punto, los amperios de carga máxima podrían superarse a temperaturas ambiente altas. Si todos los compresores están funcionando en el circuito 1, o todos los compresores menos uno, la conexión eléctrica es de un solo punto y la OAT es superior a 46,6°C (115,9°F), el circuito 2 está limitado a funcionar todos los compresores menos uno. Este límite permitirá a la unidad funcionar a temperaturas superiores a 46,6°C (115,9°F).

3.12.5 Control de ventiladores en configuración "V"

El control de ventiladores de la unidad EWYQ-F- depende de la configuración de la unidad; si la unidad está configurada como un tipo "V", el control de ventiladores se controla directamente desde la unidad; si la unidad está configurada como "W", cada circuito controlará sus propios ventiladores.

El control de ventiladores se utiliza en modo FRÍO, FRÍO con Glicol o HIELO para mantener la mejor presión de condensación, así como en modo CALOR para mantener la mejor presión de evaporación. Todos los modos de control se basan en la temperatura saturada del gas.

3.12.5.1Fase de ventilador

Los ventiladores se pondrán en fase siempre que haya al menos un compresor funcionando. Puesto que se debe garantizar una fase alta adecuada para el circuito con la mayor temperatura de condensación saturada en modo FRÍO o la temperatura de evaporación saturada inferior en modo CALOR, si ambos circuitos están encendidos, reciben la misma temperatura de condensación/evaporación saturada, que se calcula como la superior/inferior de las temperaturas de condensación/evaporación saturadas de cada circuito:

```
T con_sat_ref = MÁX ( T_cond_sat_T_Cir#1, T_cond_sat_T_Cir#1)
T evap_sat_ref = MÍN ( T_evap_sat_T_Cir#1, T_Evap_sat_T_Cir#1)
```

La puesta en fase del ventilador se acomoda en cualquier lugar entre los ventiladores comunes de 4 a 6, utilizando hasta 4 salidas para el control. El número total de ventiladores está ajustado con cambios de 1 o 2 ventiladores cada vez, como se muestra en la tabla siguiente:

	4 VENTILADORES				
Fase de ventilador	Salidas energizadas para cada fase	Salid a 1	Salida 2	Salida 3	Salida 4
1	1	0	0	00	00
2	1,2	0	0	00	00
3	1,3	0	0	0	00
4	1,2,3	0	0	00	
	5 VENTILADORES				
Fase de ventilador	Salidas energizadas para cada fase	Salid a 1	Salida 2	Salida 3	Salida 4
1	1	0	0	00	00
2	1,2	0	0	00	00
3	1,3	0	0	00	00
4	1,2,3	0	0	00	00
5	1,2,3,4	0	0	00	0
	6 VENTILADORES				
Fase de ventilador	Salidas energizadas para cada fase	Salid a 1	Salida 2	Salida 3	Salida 4
1	1	0	0	00	00
2	1,2	0	0	00	00
3	1,3	0	0	00	00
4	1,2,3	0	0	00	00
5	1,3,4	0	0	00	00
6	1,2,3,4	0	0	00	00

3.12.5.2Objetivo del condensador

El objetivo del condensador se selecciona automáticamente de los puntos de ajuste (ver tablas de puntos de ajuste, "Objetivo del condensador x%"), basándose en el porcentaje de capacidad real de la unidad (compresores en

funcionamiento / número total de compresores en la unidad). Cada fase de capacidad de un circuito utiliza un punto de ajuste de objetivo de condensación diferente.

Se debe imponer siempre un objetivo de condensador mínimo, calculado tomando como base la LWT del evaporador. Así, el objetivo del condensador será el máximo entre el punto de ajuste seleccionado y el calculado.

Para las unidades de circuito doble en forma de "V", se necesita una regulación adicional del objetivo para permitir diferencias significativas entre las temperaturas de condensación saturadas del circuito. Esto puede suceder cuando la carga de la unidad está desequilibrada entre circuitos (25%, 75% o 50% con un circuito a plena carga y el otro apagado).

En esta condición, para prevenir que se inhiba una fase alta adicional del compresor, el objetivo del condensador(*) se anula de la manera siguiente:

Objetivo del nuevo condensador = Objetivo del condensador + [30°C - MIN (Tcond#1, Tcond#2)]

Nombre	Unidad/Circ	Predeter Escala			
Nomore	uito	minado	mín	máx	delta
Objetivo máx. del condensador	Circuito	38°C	25°C	55°C	1
Objetivo mín. del condensador	Circuito	30°C	25°C	55°C	1

3.13 Objetivo del evaporador

El objetivo del evaporador está fijo a 2°C (35,6°F). Este valor fijo se basa en las características mecánicas y termodinámicas de R410a.

3.13.1 Gestión de la carga desequilibrada

Si la carga de la unidad es el 50% y un circuito se está moviendo de apagado a arranque, la aplicación fuerza la redistribución de la carga de la unidad mediante una fase baja. La lógica de control de capacidad estándar de la unidad proporciona el "siguiente apagado" de un compresor en el circuito a carga completa y, por consiguiente, la carga de la unidad se reequilibrará. En estas condiciones, no hay obstáculos para que se ponga en marcha el compresor adicional.

3.13.2 Fase alta

En modo FRÍO, el primer ventilador no se pondrá en marcha hasta que la presión del evaporador caiga o el condensador de presión alce el requisito para satisfacer la alarma de "No hay cambio de presión tras el arranque". Una vez cumplido este requisito, si no hay VFD de ventilador, el primer ventilador se enciende cuando la temperatura del condensador superado supera el objetivo del condensador. Si hay un VFD de ventilador, el primer ventilador se enciende cuando la temperatura del condensador saturado supera el objetivo inferior del condensador de 5,56°C (10°F).

Tras ello, se utilizarán las cuatro bandas muertas de fase alta. Las fases de uno a cuatro utilizan sus respectivas bandas muertas. Las fases de cinco a seis utilizan la banda muerta de fase alta 4.

Cuando la temperatura saturada del condensador es mayor que el objetivo + la banda muerta activa, se acumula un error de fase alta.

Paso de error de fase alta = Temperatura del condensador saturado – (Objetivo + Banda muerta de fase alta)

El paso de error de fase alta se añade al acumulador de fase alta una vez cada 5 segundos, pero sólo si la temperatura de refrigeración del condensador saturado no se está reduciendo. Cuando el acumulador de errores de fase alta supera los 11°C (19,8°F), se agrega otra fase.

Cuando se produce una fase alta o cuando la temperatura del condensador saturado vuelve a bajar dentro de la banda muerta de fase alta, el acumulador de fase alta vuelve a cero.

En modo CALIENTE, antes de que arranque el primer compresor, todos los ventiladores están encendidos para preparar la bobina, que en este ciclo actúa como condensador.

3.13.3 Fase baja

Se utilizarán cuatro bandas muertas de la fase baja. Las fases de uno a cuatro utilizan sus respectivas bandas muertas. Las fases cinco y seis utilizan la banda muerta de fase baja 4.

Cuando la temperatura saturada del refrigerante del condensador es menor al objetivo – la banda muerta activa, se acumula un error de fase baja:

Paso de error de fase baja = (Objetivo - Banda muerta de fase baja) - Temperatura del condensador saturada

El paso de error de fase baja se agrega al Acumulador de fase baja una vez cada 5 segundos. Cuando el acumulador de errores de fase baja supera los 2,8°C (5°F), se elimina otra fase de ventiladores del condensador.

Cuando se produce una fase baja o cuando la temperatura saturada vuelve a subir dentro de la banda muerta de fase baja, el acumulador de error de fase baja vuelve a cero.

3.13.4 Frecuencia variable (VFD)

El control de ganancia de presión del condensador se logra mediante una VFD en las primeras salidas (Speedtrol) o en todas las salidas (modulación de la velocidad del ventilador) para el control de los ventiladores.

Este control de VFD varía la velocidad del primer ventilador o de todos los ventiladores para llevar la temperatura saturada del condensador a un objetivo. El objetivo suele ser el mismo que la temperatura meta saturada del condensador.

La velocidad se controla entre los puntos de ajuste de velocidad máximo y mínimo.

Nombre	Unidad/Cir cuito	Predeter minado	Escala		
			mín	máx	delta
Velocidad máxima de frecuencia variable	Circuito	100%	60%	110%	1
Velocidad mínima de frecuencia variable	Circuito	25%	25%	60%	1

3.13.5 Estado de VFD

La señal de velocidad de VFD es siempre 0 cuando la fase del ventilador es 0.

Cuando la fase del ventilador es mayor que 0, la señal de velocidad de VFD se activa y controla la velocidad según sea necesario.

3.13.6 Compensación de fase alta

Para que la transición al activar una fase alta de otro ventilador sea más suave, la VFD compensa mediante la disminución inicial de velocidad. Esto se logra agregando una nueva banda muerta de fase alta de ventilador al objetivo de VFD. La meta más alta hace que la lógica de VFD disminuya la velocidad del ventilador. Entonces, cada 2 segundos, se quita 0,1°C (0,18°F) del objetivo de VFD hasta que sea igual al punto de ajuste de temperatura meta saturada del condensador.

4 Funciones del circuito

4.1 Cálculos

4.1.1 Temperatura saturada del refrigerante

La temperatura saturada del refrigerante se calculará a partir de las lecturas del sensor de presión de cada circuito. Una función proporcionará el valor convertido de temperatura para que se ajuste a los valores NIST tal y como los genera el programa REFPROP:

dentro de los 0,1°C para entradas de presión de 0 kPa a 2070 kPa dentro de los 0,2°C para entradas de presión de -80 kPa a 0 kPa

4.1.2 Aproximación del evaporador

La aproximación del evaporador se calculará para cada circuito. La ecuación es la siguiente:

En modo **FRÍO**: Aproximación del evaporador = LWT – Temperatura saturada del evaporador En modo **CALIENTE**: Aproximación del evaporador = OAT – Temperatura saturada del evaporador

4.1.3 Aproximación del condensador

La aproximación del condensador se calculará para cada circuito. La ecuación es la siguiente:

En modo **FRÍO**: Aproximación del condensador = Temperatura saturada del condensador – OAT En modo **CALIENTE**: Aproximación del condensador = Temperatura saturada del condensador – LWT

4.1.4 Sobrecalentamiento de succión

El sobrecalentamiento de succión se calculará para cada circuito mediante la siguiente ecuación:

Sobrecalentamiento de succión (SSH) = Temperatura de succión - Temperatura saturada del evaporador

4.1.5 Presión de bombeado

La presión a la que bombeará un circuito se basa en el punto de ajuste de la descarga de presión del evaporador bajo en modo FRÍO. En cambio, en modo CALOR, el modo se basa en la presión de evaporación real, ya que en modo CALOR la presión de evaporación es baja.

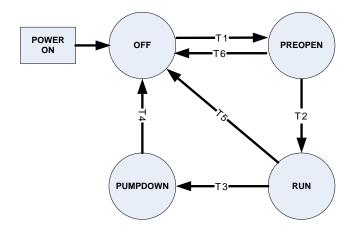
La ecuación es la siguiente:

En modo **FRÍO**: Presión de bombeo = Punto de ajuste de descarga de la presión de evaporación baja – 103kPa En modo **CALIENTE**: Presión de bombeo = MIN (200 kPa, (presión antes de PD – 20 kPa), 650 kPa)

4.2 Lógica del control de circuitos

4.2.1 Habilitación de circuitos

Un circuito está habilitado para arrancar si se cumplen las siguientes condiciones:


- El interruptor del circuito está cerrado
- No hay alarmas de circuitos activadas
- El punto de ajuste Modo de circuito está activado
- Al menos un compresor está habilitado para arrancar (según los puntos de ajuste de habilitación)

4.2.2 Estados del circuito

El circuito siempre presenta uno de estos cuatro estados:

- APAGADO, el circuito no está funcionando
- PRE-ABIERTO, el circuito se está preparando para arrancar
- FUNCIONAMIENTO, el circuito está funcionando
- BOMBEO, el circuito está realizando un apagado normal

La transición entre estos estados se muestra en el diagrama siguiente:

T1 – de apagado a pre-abierto

Ningún compresor está funcionando y cualquier compresor en el circuito recibe la orden de arrancar (ver el control de capacidad de la unidad)

T2 – de pre-abierto a funcionamiento

han pasado 5 segundos de la fase de PRE-APERTURA

T3 – de funcionamiento a bombeo

Se debe cumplir cualquiera de las siguientes condiciones:

El último compresor del circuito recibe la orden de detenerse

El estado de la unidad es BOMBEO

El interruptor del circuito está abierto

El modo del circuito está desactivado

La alarma de BOMBEO del circuito está activa

T4 – de bombeo a apagado

Se debe cumplir cualquiera de las siguientes condiciones:

Presión del evaporador < Valor de presión de bombeo¹

El estado de la unidad es APAGADO

La alarma de parada rápida del circuito está activa

T5 – de funcionamiento a apagado

Se debe cumplir cualquiera de las siguientes condiciones:

El estado de la unidad es APAGADO

La alarma de parada rápida del circuito está activa

Ha fallado un intento de arranque a temperatura ambiente baja

T6 – de pre-abierto a apagado

Se debe cumplir cualquiera de las siguientes condiciones:

El estado de la unidad es APAGADO

El estado de la unidad es BOMBEO

El interruptor del circuito está abierto

El modo del circuito está desactivado

La alarma de parada rápida del circuito está activa

La alarma de bombeo del circuito está activa

4.3 Estado del circuito

El estado de circuito se determina por las condiciones que aparecen en la siguiente tabla:

Estado Apagado: Listo Apagado: Temporizadores de ciclo Apagado: Todos los compresores	Condiciones El circuito está listo para arrancar cuando sea necesario. El circuito está apagado y no puede arrancar debido a un temporizador de ciclo activado en todos los compresores. El circuito está apagado y no puede arrancar debido a que
desactivados	todos los compresores están desactivados.
Apagado: Teclado desactivado	El circuito está apagado y no puede arrancar debido al punto de ajuste de activación del circuito.
Apagado: Interruptor de circuito	El circuito está apagado y el interruptor del circuito está apagado.
Apagado: Alarma	El circuito está apagado y no puede arrancar debido a una alarma activada.
Apagado: Modo de prueba	El circuito está en modo de prueba.
Pre-abierto	El circuito está en estado pre-abierto.
En funcionamiento: Bombeo	El circuito está en estado de bombeo.
Funcionamiento: Normal	El circuito está en estado de funcionamiento y operando normalmente.
Funcionamiento: Presión de evap. baja	El circuito está en funcionamiento y no puede cargar debido a una presión baja del evaporador.
Funcionamiento: Presión cond. alta	El circuito está en funcionamiento y no puede cargar debido a una presión alta del condensador.

¹ En modo enfriador, la válvula es igual a la descarga de presión baja – 103,0 kPa

En el modo de calor, la válvula es igual a la presión de evaporación en el arranque de bombeo -20 kPa (límite entre 200 kPa y 650 kPa)

Funcionamiento: Límite superior de

temperatura ambiente

Funcionamiento: Descongelación

El circuito está funcionando y no puede añadir más compresores debido al límite alto de temperatura ambiente en la capacidad de la unidad. Sólo se aplica al circuito 2.

La descongelación está funcionando

4.4 Procedimiento de bombeo

El bombeo se realiza de la manera siguiente:

- Si hay múltiples compresores funcionando, apagar los compresores adecuados basándose en la lógica de secuencia y dejar sólo uno funcionando;
- Apagar la salida de línea de líquido (si la válvula está presente);
- Mantener en funcionamiento hasta que la presión del evaporador alcance la presión de bombeo. Después, detener el compresor;
- Si la presión del evaporador no alcanza la presión de bombeo en dos minutos, parar el compresor y generar un aviso de bombeo fallido;

4.5 Control del compresor

Los compresores funcionan únicamente cuando el circuito está en estado de funcionamiento o bombeo. No funcionarán cuando el circuito esté en cualquier otro estado.

4.5.1 Disponibilidad del compresor

Un compresor se considera disponible para arrancar si se cumplen todas las siguientes condiciones:

- El circuito correspondiente está activado
- El circuito correspondiente no está en bombeo
- No hay temporizadores de ciclo activos para el compresor
- No hay eventos de límite activos para el circuito correspondiente
- El compresor está activado mediante los puntos de ajuste de activación
- El compresor aún no está funcionando

4.5.2 Poner en marcha un compresor

Un compresor arranca si recibe una orden de arranque de la lógica de control de capacidad de la unidad o si la rutina de descongelación está reclamando el arranque.

4.5.3 Detener un compresor

Un compresor se apaga si se cumple alguna de las siguientes condiciones:

La lógica de control de capacidad ordena su apagado

Se produce una alarma de descarga y la secuencia requiere que este compresor sea el próximo en apagarse El estado del circuito es de bombeo y la secuencia requiere que este compresor sea el próximo en apagarse La rutina de descongelación ha reclamado una parada

4.5.4 Temporizadores de ciclo

Se impone un tiempo mínimo entre los arranques del compresor y un tiempo mínimo entre el apagado y el arranque de compresor. Los valores de tiempo están determinados por los puntos de ajuste del temporizador de arranque-arranque y del temporizador de arranque-parada.

Nombre	Unidad/Cir	Predeter	Escala		
Nombre	cuito	minado	mín	máx	delta
Arranque a tiempo de arranque	Circuito	6 min	6	15	1
Parada a tiempo de arranque	Circuito	2 min	1	10	1

Estos temporizadores de ciclo no se imponen durante el reinicio de alimentación del enfriador. Significa que si se reinicia la alimentación los temporizadores no están activos.

Estos temporizadores pueden borrarse mediante una configuración en la HMI.

Cuando la rutina de descongelación esté activa, los temporizadores se establecen por la lógica de fase de descongelación.

4.6 Control de ventiladores en configuración "W"

El control de ventiladores del condensador se gestiona a este nivel cuando la unidad está configurada con un tipo de circuito "W" o "V" individual. Lo siguiente cubre este tipo de unidades. El control de ventiladores del condensador de configuración del circuito en "V" doble se describe en el capítulo "Funciones de la unidad", anterior en este documento.

4.6.1 Fase de ventilador

Los ventiladores se deben poner en fase según se necesite cada vez que los compresores estén funcionando en el circuito. Todos los ventiladores en funcionamiento se apagarán cuando el compresor pase al estado apagado. La puesta en fase del ventilador se acomoda en cualquier lugar entre los ventiladores de 3 a 6 en un circuito, utilizando hasta 4 salidas para el control. El número total de ventiladores está ajustado con cambios de 1 o 2 ventiladores cada vez, como se muestra en la tabla siguiente:

	3 VENTILADORES				
Fase de ventilador	Salidas energizadas para cada fase	Salid a 1	Salid a 2	Salid a 3	Salida 4
1	1	0	0	00	
2	1,2	0	0	00	
3	1,3	0	0	00	
	4 VENTILADORES				
Fase de ventilador	Salidas energizadas para cada fase	Salid a 1	Salid a 2	Salid a 3	Salida 4
1	1	0	0	00	00
2	1,2	0	0	00	00
3	1,3	0	0	00	00
4	1,2,3	0	0	00	
	5 VENTILADORES				
Fase de ventilador	Salidas energizadas para cada fase	Salid a 1	Salid a 2	Salid a 3	Salida 4
1	1	0	0	00	00
2	1,2	0	0	00	0
3	1,3	0	0	0	00
4	1,2,3	0	0	00	00
5	1,2,3,4	0	0	00	0
	6 VENTILADORES				
Fase de ventilador	Salidas energizadas para cada fase	Salid a 1	Salid a 2	Salid a 3	Salida 4
1	1	0	0	00	00
2	1,2		0	00	00
3	1,3	0	0	00	00
4	1,2,3	0	0	00	00
5	1,3,4	0	0	00	00
6	1,2,3,4	0	0	00	00
7VENTILADORES					
Fase de ventilador	Salidas energizadas para cada fase	Salid a 1	Salid a 2	Salid a 3	Salida 4

1	1	0	0	00	00
2	1,2	0	0	00	0
3	1,3	0	0	00	0
4	1,2,3	0	0	00	0
5	1,3,4	0	0	00	0
6	1,2,3,4	0	0	00	0
7	1,2,3,4	0	0	00	0

4.6.2 Objetivo del control de ventiladores

En el modo FRÍO el objetivo de la temperatura de condensación se calcula automáticamente usando la fórmula siguiente:

Objetivo de la temperatura de condensación = (0,5 * Temperatura saturada del condensador) – 30,0

Este valor está limitado entre un objetivo de temperatura de condensación mínimo y un objetivo de condensación máximo, establecidos por el interfaz.

En el modo de CALOR el objetivo de la temperatura de evaporación está fijo en 2°C.

4.6.2.1 Fase alta en modo FRÍO

El primer ventilador no se pondrá en marcha hasta que la presión del evaporador caiga o el condensador de presión alce el requisito para satisfacer la alarma de "No hay cambio de presión tras el arranque". Una vez cumplido este requisito, si no hay VFD de ventilador, el primer ventilador se enciende cuando la temperatura del condensador superado supera el objetivo del condensador. Si hay un VFD de ventilador, el primer ventilador se enciende cuando la temperatura del condensador saturado supera el objetivo inferior del condensador de 5,56°C (10°F).

Tras ello, se utilizarán las cuatro bandas muertas de fase alta. Las fases de uno a cuatro utilizan sus respectivas bandas muertas. Las fases de cinco a seis utilizan la banda muerta de fase alta 4.

Cuando la temperatura saturada del condensador es mayor que el objetivo + la banda muerta activa, se acumula un error de fase alta.

Paso de error de fase alta = Temperatura del condensador saturado – (Objetivo + Banda muerta de fase alta)

El paso de error de fase alta se añade al acumulador de fase alta una vez cada 5 segundos, pero sólo si la temperatura de refrigeración del condensador saturado no se está reduciendo. Cuando el acumulador de errores de fase alta supera los 11°C (19,8°F), se agrega otra fase.

Cuando se produce una fase alta o cuando la temperatura del condensador saturado vuelve a bajar dentro de la banda muerta de fase alta, el acumulador de fase alta vuelve a cero.

4.6.2.2 Fase baja en modo FRÍO

Se utilizarán cuatro bandas muertas de la fase baja. Las fases de uno a cuatro utilizan sus respectivas bandas muertas. Las fases cinco y seis utilizan la banda muerta de fase baja 4.

Cuando la temperatura saturada del refrigerante del condensador es menor al objetivo menos la banda muerta activa, se acumula un error de fase baja.

Paso de error de fase baja = (Objetivo - Banda muerta de fase baja) - Temperatura del condensador saturada

El paso de error de fase baja se agrega al Acumulador de fase baja una vez cada 5 segundos. Cuando el acumulador de errores de fase baja supera los 2,8°C (5°F), se elimina otra fase de ventiladores del condensador.

Cuando se produce una fase baja o cuando la temperatura saturada vuelve a subir dentro de la banda muerta de fase baja, el acumulador de error de fase baja vuelve a cero.

4.6.2.3 Fase alta en modo CALOR

Cuando el circuito está en frase pre-abierta todas las fases del ventilador están encendidas para preparar la bobina para la fase de evaporación del ciclo.

Cuando la temperatura de evaporación saturada del refrigerante es menor que el objetivo menos la banda muerta activa, se acumula un error de fase alta.

Paso de error de fase alta = Temperatura de evaporación saturada - Objetivo

El paso de error de fase baja se agrega al Acumulador de fase baja una vez cada 5 segundos. Cuando el acumulador de errores de fase baja supera los 11°C (51,8°F), se añade otra fase de ventiladores del condensador.

Cuando se produce una fase baja o cuando la temperatura saturada vuelve a subir dentro de la banda muerta de fase baja, el acumulador de error de fase baja vuelve a cero.

4.6.2.4 Fase baja en modo CALOR

Se utilizarán cuatro bandas muertas de la fase baja. Las fases de uno a cuatro utilizan sus respectivas bandas muertas. Las fases cinco y seis utilizan la banda muerta de fase baja 4.

Cuando la temperatura saturada del refrigerante de evaporación es menor al objetivo menos la banda muerta activa, se acumula un error de fase baja.

Paso de error de fase baja = Temperatura de evaporación saturada + Objetivo

El paso de error de fase baja se agrega al Acumulador de fase baja una vez cada 5 segundos. Cuando el acumulador de errores de fase baja supera los 2,8°C (5°F), se elimina otra fase de ventiladores del condensador.

Cuando se produce una fase baja o cuando la temperatura saturada vuelve a subir dentro de la banda muerta de fase baja, el acumulador de error de fase baja vuelve a cero.

4.6.2.5 Frecuencia variable (VFD)

El control de ganancia de presión de la bobina se logra mediante una VDF en las primeras salidas (Speedtrol) o en todas las salidas (modulación de la velocidad del ventilador) para el control de los ventiladores.

Este control de VFD varía la velocidad del primer ventilador o de todos los ventiladores para llevar la temperatura saturada del condensador/evaporador a un objetivo. El objetivo suele ser el mismo que el objetivo de control del ventilador.

La velocidad se controla entre los puntos de ajuste de velocidad máximo y mínimo.

4.6.2.6 Estado de VFD

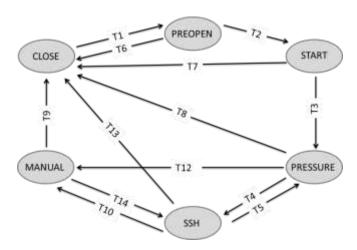
La señal de velocidad de VFD es siempre 0 cuando la fase del ventilador es 0.

Cuando la fase del ventilador es mayor que 0, la señal de velocidad de VFD se activa y controla la velocidad según sea necesario.

4.6.2.7 Compensación de fase alta

Para que la transición al activar una fase alta de otro ventilador sea más suave, la VFD compensa mediante la disminución inicial de velocidad. Esto se logra agregando una nueva banda muerta de fase alta de ventilador al objetivo de VFD. La meta más alta hace que la lógica de VFD disminuya la velocidad del ventilador. Entonces, cada 2 segundos, se quita 0,1°C (0,18°F) del objetivo de VFD hasta que sea igual al punto de ajuste de temperatura meta saturada del condensador.

4.7 Control de la EXV


La unidad EWYQ-F- está equipada con una válvula de expansión electrónica con los siguientes parámetros de preconfiguración:

• Pasos máx.: 3530

Aceleración máx.: 150 pasos/seg.
Corriente de detención: 0 mA
Corriente de fase: 100 mA

También el trabajo de la válvula de expansión electrónica se gestiona como se muestra en la figura de estado lógico siguiente. Los estados son:

- CERRADO: en este estado la válvula está totalmente cerrada y no hay ninguna regulación activa;
- **PRE-ABIERTO**: en este estado la válvula está situada en una posición fija para preparar los compresores del circuito para la puesta en marcha;
- **ARRANQUE**: en este estado la válvula está bloqueada en una posición fija, mayor que la fase de PRE-ABIERTO, para prevenir que el líquido vuelva a los compresores;
- **PRESIÓN**: en este estado, la válvula controla la presión de evaporación, con regulación PID. Esta fase tiene 3 tipos diferentes de control:
 - Control de presión de arranque: siempre, tras la fase de ARRANQUE, la válvula de expansión controla la presión para maximizar el intercambio térmico en el arranque de la unidad;
 - Control de presión de evaporación máx.: cuando la presión de evaporación supera la presión de evaporación de funcionamiento máx.;
 - o Control de la presión de descongelación: en la rutina de descongelación.
- **SSH**: en este estado, la válvula controla el sobrecalentamiento de succión con regulación PID, calculada como temperatura de succión temperatura de evaporación saturada;
- MANUAL: en este estado, la válvula controla un punto de ajuste de presión, introduciendo mediante HMI, con regulación PID.

T1 – de cerrado a pre-abierto

El estado del circuito es PRE-ABIERTO;

T2 – de pre-abierto a arranque

Pasa de la fase de PRE-ABIERTO EXV y dura un tiempo igual al punto de ajuste del tiempo de pre-abierto;

T3 – de arranque a presión

Pasa de la fase de ARRANQUE EXV y dura un tiempo igual al punto de ajuste del tiempo de arranque;

T4 – de presión a SSH

SSH es inferior al punto de ajuste durante al menos 30 segundos, cuando el control está en la fase de PRESIÓN:

T5 – de SSH a presión

Si pasa el control de presión de arranque,

O la presión de evaporación es superior a la evaporación máx. durante al menos 60 segundos,

O el estado de descongelación es superior o igual a 2;

T6 – de pre-abierto a cerrado

El estado del circuito es APAGADO o de BOMBEO y el estado Exv es PRE-ABIERTO

T7 – de arranque a cerrado

El estado del circuito es APAGADO o de BOMBEO y el estado Exv es ARRANQUE

T7 – de presión a cerrado

El estado del circuito es APAGADO o de BOMBEO y el estado Exv es PRESIÓN

T7 - de manual a cerrado

El estado del circuito es APAGADO o de BOMBEO y el estado Exv es MANUAL

T10 – de SSH a manual

El punto de ajuste de manual pasa a VERDADERO desde HMI;

T12 – de presión a manual

El punto de ajuste de manual pasa a VERDADERO desde HMI;

T13 - de SSH a cerrado

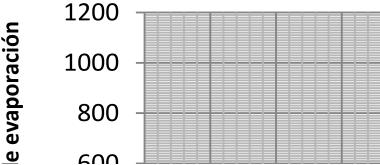
El estado del circuito es APAGADO o de BOMBEO y el estado Exv es MANUAL

T14 – de manual a SSH

El punto de ajuste de manual pasa a FALSO desde HMI;

4.7.1 Rango de posición EXV

El rango de posición EXV varía entre el 12% y el 95% para cada par de compresores en funcionamiento y el número total de ventiladores en la unidad.

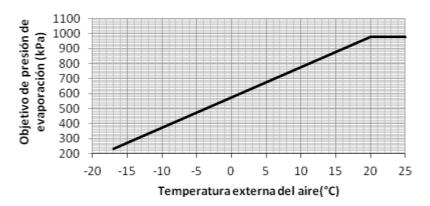

Durante la fase baja de un compresor, la posición máxima se reduce un 10% por cada minuto para prevenir que entre refrigerante líquido a los compresores. Tras esta demora inicial de un minuto, se permite que el máximo de la válvula vuelva a su valor normal a un índice de 0,1% cada seis segundos. Este desplazamiento a la posición máxima no debería producirse si la fase baja se debe a una descarga de presión baja.

Además, la posición máxima de la válvula de expansión se puede aumentar si después de dos minutos el sobrecalentamiento de succión es superior a 7,2°C (13°F) y la válvula de expansión ha estado dentro del 5% de esta posición máxima actual. El máximo aumenta con un índice del 0,1% cada seis segundos hasta un total de un 5% adicional. Este desplazamiento a la posición máxima se restablece cuando el EXV deja de estar en estado de control de sobrecalentamiento o un compresor en las fases del circuito.

4.7.2 Control de presión de arranque

Uno de los modos de control de presión es durante la puesta en marcha de la unidad. En esta situación, el control de la válvula de expansión electrónica se utiliza para maximizar el objetivo del intercambio de calor con agua (ciclo FRÍO) o de la temperatura del aire externo (ciclo CALOR) de la manera siguiente:

Control EXV - |



Basándose en el valor de la temperatura del agua saliente, se calcula el punto de ajuste del control de presión de arranque. Los rangos de funcionamiento se encuentran entre los siguientes valores:

LWT a la presión de evaporación de funcionamiento máx. (980 kPa) = 20°C (68°F)

LWT a la presión de evaporación de funcionamiento mín. (280 kPa) = -15°C (5°F)

Control EXV - Calentamiento

Basándose en el valor del aire externo, se calcula el punto de ajuste del control de presión de arranque. Los rangos de funcionamiento se encuentran entre los siguientes valores:

OAT a la presión de evaporación de funcionamiento máx. (980 kPa) = 20°C (68°F)

OAT a la presión de evaporación de funcionamiento mín. (280 kPa) = -17°C (5°F)

Este control de presión particular funciona cada vez que se pone en marcha la unidad

El control Exv sale de su subrutina si el SSH es inferior al punto de ajuste durante un tiempo de más de 5 segundos o la subrutina ha estado activa más de 5 minutos.

Después de esta fase, el control siempre pasa al control de SSH.

4.7.3 Control de presión máx.

Este control de presión arranca cuando la presión de evaporación aumenta hasta la presión de evaporación máx. durante más de 60 segundos.

Después de que pase este tiempo, la válvula de control pasa al control PID específico para regular la presión al punto de ajuste de presión de evaporación máx. (predeterminado a 980 kPa).

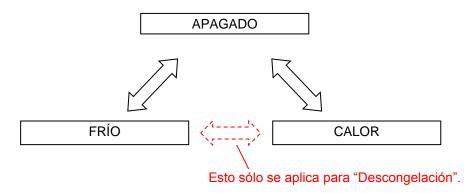
El control Exv sale de su subrutina cuando el SSH es inferior al punto de ajuste durante un tiempo de más de 5 segundos.

Después de esta fase, el control siempre pasa al control de SSH.

4.7.4 Control de presión manual

Esta rutina está diseñada para gestionar el punto de ajuste de presión del control Exv manualmente. Cuando la rutina se activa, la posición de inicio de la válvula permanece en la ultima posición que ocupó en el control automático. De esta manera, la válvula no se mueve por un cambio 'suave'.

Cuando el control de Exv está en estado de presión manual, la lógica pasará automáticamente al control de presión máx. si la presión de funcionamiento supera la presión de funcionamiento máxima.


4.8 Control de válvula de cuatro vías

La válvula de cuatro vías es el componente de la bomba de calor que invierte el ciclo termodinámico y, por tanto, el modo, de enfriador a bomba de calor y viceversa.

La lógica interna del controlador gestiona este cambio de ciclo, evitando el cambio accidental de la válvula, y garantiza que ésta esté en la posición correcta según el ciclo seleccionado en el HMI.

4.8.1 Estado de la válvula de cuatro vías

El estado de la válvula de cuatro vías sigue el cuadro siguiente:

Los modos de funcionamiento se seleccionan con el interruptor manual en el panel de control.

Para activar un cambio de la válvula, todos los compresores deben estar apagados. Sólo durante la fase de descongelación, la válvula es capaz de cambiar un compresor en funcionamiento.

Si el interruptor se utiliza para cambiar de modo durante el funcionamiento normal, el interruptor HP se activará. La unidad realizará un bombeo y después apagará el compresor. Cuando todos los compresores estén apagados, comienza un temporizador de 10 segundos. Cuando pasa este tiempo la válvula se cambia.

Los compresores se ponen en marcha después del temporizador de recirculación normal.

El cambio de la válvula también se ve limitada por los límites de presión diferencial de la válvula de cuatro vías, es decir, la presión diferencial debe ser de entre 300 kPa y 3100 kPa.

La válvula está controlada por una salida digital con la lógica siguiente.

Válvula de 4 vías	Ciclo de enfriamiento	Ciclo de calentamiento
	APAGADO	Encendido

Estado de la válvula de 4 vías	Condiciones
APAGADO	Mantener la salida de la última operación.
FRÍO	Mantener la salida de enfriamiento
CALOR	Mantener la salida de calentamiento

4.9 Válvula de purga de gas

Esta válvula se utiliza para purgar gas del receptor de líquido y garantizar un llenado correcto. Esta rutina sólo está activa cuando la máquina está en modo de **CALOR**.

Esta válvula está abierta cuando:

- El control Exv está en fase de pre-abierto, en modo de CALOR;
- El control del circuito está en fase de bombeo, en modo de CALOR;
- Durante 5 minutos después de que se ponga en marcha el circuito, en modo de CALOR;
- Durante 5 minutos después del arranque de la fase 7 de la rutina de descongelación; después la válvula de cuatro vías vuelve a la posición de **CALOR**;

La válvula está cerrada cuando:

- El estado del circuito es APAGADO;
- El modo de funcionamiento es diferente de CALOR;
- En la rutina de descongelación, cuando la válvula de cuatro vías está en posición de FRÍO;

4.10 Anulaciones de capacidad: límites de operación

Las siguientes condiciones anularán el control de capacidad automático como se ha descrito. Estas anulaciones evitan que el circuito llegue a una condición para la cual no fue diseñado.

4.10.1 Presión baja del evaporador

Si están activadas las alarmas de presión baja del operador (detenido) o presión baja del operador (descarga), la capacidad del circuito se puede ver limitada o reducida. Consulte la sección Eventos de circuito para obtener más detalles sobre la activación, el reinicio y las acciones emprendidas.

4.10.2 Presión alta del condensador

Si está activada la alarmas de presión alta del condensador (descarga) la capacidad del circuito se puede ver limitada o reducida. Consulte la sección Eventos de circuito para obtener más detalles sobre la activación, el reinicio y las acciones emprendidas.

4.10.3 Arranques de ambiente bajo

Se inicia un arranque de OAT bajo si la temperatura saturada del refrigerante del condensador es inferior a 29,5°C (85,1°F) cuando arranca el primer compresor. Una vez que el compresor arranca, el circuito está en un estado de arranque de OAT bajo durante un tiempo igual al punto de ajuste del tiempo de arranque de OAT bajo. Durante los arranques de OAT bajo, se desactivan la lógica de arranque de congelación para la alarma de presión del evaporador bajo y las alarmas de presión baja del evaporador detenido y descarga. El límite absoluto para la presión baja del evaporador se impone y la presión baja del evaporador se activa si la presión del evaporador baja de ese límite.

Cuando expire el temporizador de arranque de OAT bajo, si la presión del evaporador es igual o mayor al punto de ajuste de presión baja del evaporador (descarga), el arranque se considera con éxito y se restablecen la alarma y la lógica de evento normales. Si la presión del evaporador es menor que el punto de ajuste de presión baja del evaporador (descarga), cuando expire el temporizador de arranque de OAT bajo el arranque se considera fallido y el compresor se apagará.

Se permiten múltiples intentos de arranque de ambiente bajo. En el tercer intento de arranque de ambiente bajo, la alarma de restablecimiento se activa y el circuito no intentará reiniciar hasta que la alarma de reinicio se borre.

El contador de reinicios se borra cuando hay un arranque exitoso, cuando se activa la alarma de Reinicio con OAT baja o cuando el reloj de unidad indica el comienzo de un nuevo día.

Esta rutina se activa sólo en modo FRÍO.

4.11 Prueba de presión alta

Esta rutina se utiliza sólo para probar el interruptor de presión alta en la línea final de la producción. Esta prueba apaga todos los ventiladores y aumenta el umbral de descarga de presión alta. Cuando el interruptor de presión alta se activa, la identidad de rutina se desactiva y la unidad vuelve a su ajuste inicial.

En cada caso, después de 5 minutos la rutina se desactiva automáticamente.

4.12 Lógica del control de descongelación

Se requiere descongelación cuando la unidad está en modo CALOR y la temperatura ambiente baja a un nivel en el que el punto de rocío está por debajo de 0°C. En estas condiciones, se puede formar hielo en la bobina y se necesita quitar periódicamente para prevenir presiones de evaporación bajas.

La rutina de descongelación detecta la condición de acumulación de hielo en la bobina e invierte el ciclo. Por tanto, con la bobina funcionando ahora como condensador, el calor de rechazo derrite el hielo.

Cuando esta rutina toma el control, al haberse detectado las condiciones para la descongelación, controla los compresores, el ventilador, la válvula de expansión, la válvula de cuatro vías y la válvula solenoide (si está presente) del circuito en cuestión.

Todas las operaciones se realizan con el uso del transductor de baja presión y alta presión y los sensores de temperatura externa y de temperatura ST.

Utilizando los transductores de presión de alta y baja presión y los sensores de temperatura, el modo de control de la descongelación controla el compresor, los ventiladores, la válvula de cuatro vías y la válvula solenoide de línea de líquido (si está presente) para lograr el ciclo inverso y la descongelación.

La descongelación de ciclo inverso es automática cuando la temperatura es de menos de 8°C; por encima de esta temperatura, pero sólo hasta 10°C, si se requiere una descongelación, ésta se debe iniciar manualmente desde un punto de ajuste en la sección de circuitos HMI. Por encima de 10°C, el modo de ciclo inverso no se puede utilizar, y la descongelación sólo se puede lograr apagando la unidad y permitiendo que el hielo se derrita con temperatura ambiente alta.

4.12.1 Detección de la condición de descongelación

La descongelación automática se inicia tomando como base el siguiente algoritmo:-

Donde DP es el parámetro de descongelación, con regulación predeterminada a 10.

La rutina de descongelación no se puede iniciar si:

- El temporizador de descongelación ha terminado (tiempo entre el final de una descongelación y el inicio de otra descongelación);
- Cualquier otro circuito tiene la descongelación activa (sólo un circuito cada vez puede empezar la rutina de descongelación);

En el segundo caso, el circuito que haya pedido el arranque de descongelación esperará hasta que termine la descongelación del otro circuito.

4.12.2 Descongelación de ciclo inverso

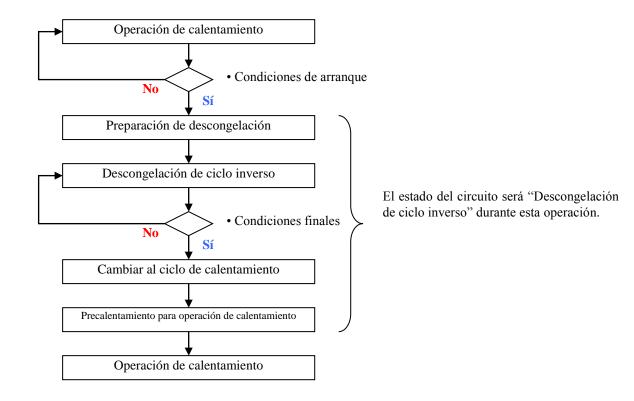
Este tipo de rutina de descongelación sólo está disponible cuando la temperatura del aire externo es de menos de 8°C y es probable la formación uniforme de hielo.

De esta manera, la unidad funciona obligatoriamente en modo FRÍO, invirtiendo el estado de funcionamiento. La rutina de descongelación está formada por 8 fases diferentes. El interruptor de la válvula de cuatro vías está hecho con un compresor activo y, cuando está en el MODO FRÍO, la alarma de presión de evaporación baja queda inhibida.

Para asegurarse de que esta rutina inicia, es necesario que se cumplan las condiciones siguientes:

- Temporizador del ciclo de descongelación ² (predeterminado 30 min) terminado;
- Ningún otro circuito con descongelación está activo;
- El ciclo de la unidad es **CALOR**;
- St < (0,7 * OAT) DP, DP es el parámetro de descongelación con valor predeterminado 10;
- St $< 0^{\circ}$ C:
- OAT < 8°C

Todas estas condiciones se deben cumplir durante 30 segundos.


La descongelación terminará si se cumple al menos una de las siguientes condiciones:

- Presión de condensación > 2960 kPa;
- LWT $< 6^{\circ}$ C;

• han pasado 10 minutos desde el arranque de la fase 3 de la rutina de descongelación;

Cuando se cumple una de estas condiciones, la unidad vuelve al ciclo de calor y la rutina de descongelación termina.

² El *temporizador del ciclo de descongelación* es un temporizador que se pone en marcha cuando termina la rutina de descongelación y no se para durante una parada del circuito.

4.12.2.1Fase 1: Preparación de descongelación

En esta fase el controlador prepara el circuito para la inversión de ciclo. Cada componente se controla con la lógica de control de descongelación:

Esta fase requiere que un compresor esté activo durante al menos 10 segundos.

4.12.2.2Fase 2: Inversión de ciclo

En esta fase, la válvula de cuatro vías se invierte temporalmente y el enfriador funciona en modo de frío: el calor del gas de descarga de condensación derrite el hielo en la parte externa de la bobina.

El paso a la fase siguiente se activa si se cumplen las siguientes condiciones:

<u>Presión diferencial (DP) > 400kPa durante 5 segundos</u>
<u>O</u>

Han pasado al menos 60 segundos desde el inicio de la fase 2

4.12.2.3Fase 3: Descongelación

En esta fase, inicia el proceso de descongelación.

El paso a la fase siguiente se activa si se cumplen las siguientes condiciones:

Han pasado 20 segundos desde el inicio de la fase 3

Si la EWT está por debajo de 14°C la lógica de control de descongelación salta la fase 4 y va directamente a la fase 5.

4.12.2.4Fase 4: Descongelación acelerada

En esta fase la lógica de control de descongelación activa todos los compresores para aumentar la presión de condensación y la temperatura para acelerar el proceso de descongelación.

El paso a la fase siguiente se activa si se cumplen las siguientes condiciones:

Han pasado 300 segundos desde el inicio de la fase 4

0

Presión de condensación > 2620 kPa (45°C) durante al menos 5 segundos

4.12.2.5Fase 5: Limpieza del hielo

En esta fase se reduce la potencia del compresor con el fin de trabajar con una presión de descarga constante, mientra se elimina el hielo residual.

El paso a la fase siguiente se activa si se cumplen las siguientes condiciones:

Presión de condensación > 2960 kPa

 $LWT < 6^{\circ}C$

0

Han pasado 10 minutos desde el inicio de la fase 3

4.12.2.6Fase 6: Preparación para restaurar el modo de calentamiento

En esta fase la lógica de control de descongelación prepara el circuito para volver al modo de calentamiento.

El paso a la fase siguiente se activa si se cumplen las siguientes condiciones:

El número de compresores activos es 1 durante al menos 10 segundos

4.12.2.7Fase 7: Inversión de ciclo, vuelta al calentamiento

En esta fase se invierte la válvula de cuatro vías y el circuito vuelve al modo de calentamiento.

El paso a la fase siguiente se activa si se cumplen las siguientes condiciones:

Presión diferencial (DP) > 400 kPa durante al menos 25 segundos

0

han pasado 60 segundos desde el inicio de la fase 7

Hay una demora de tiempo para garantizar que el líquido refrigerante no vuelva al compresor.

4.12.2.8Fase 8: Modo de calor

Con esta fase, el circuito termodinámico vuelve al modo de calentamiento y el control vuelve al punto de ajuste de calor.

El circuito vuelve al modo de calentamiento normal y la rutina de descongelación termina si se cumplen las siguientes condiciones:

<u>SSH < 6°C durante al menos 10 segundos</u>

<u>O</u>

Han pasado 120 segundos desde el inicio de la fase 8

(

<u>Temperatura de descarga > 125°C</u>

La finalidad del control de presión después del cambio de la válvula de inversión es prevenir que el líquido vuelva a los compresores.

4.12.3 Descongelación manual

La lógica de descongelación manual sigue todas las fases de la lógica de descongelación: el objetivo de esta característica es permitir que se inicie la descongelación cuando no se cumplen ni siquiera los criterios automáticos. Esto permite realizar una prueba de la máquina en condiciones críticas.

La descongelación manual se inicia con un interruptor manual del HMI, y la descongelación empieza si se cumplen las siguientes condiciones:

El circuito está en estado de funcionamiento y funciona en modo de calentamiento \underline{Y}

El interruptor de descongelación manual de HMI está en ENCENDIDO

Y

Temperatura de succión < 0°C

<u>Y</u>

Ningún otro circuito está en estado de descongelación

Tras la activación del interruptor de descongelación manual, vuelve a la posición de APAGADO después de un par de segundos.

Evento de / alarma	Temperatura del agua invertida	Diferencia de presión baja apagado, Evento	Presión de evap. baja apagado	Presión de evap. baja descarga	Presión de evap. baja inhibición de carga
Fase1			Normal		
Fase2,3,4,5,6,7	Ignorado	Ignorado	La activación temporal será 0kPa durante 10segundos	Ignorado	Ignorado
Fase8				Normal	

4.13 Tablas de puntos de ajuste

Los puntos de ajuste se conservan en la memoria permanente. El acceso a escritura y lectura de estos puntos de ajuste está determinado por una contraseña de HMI diferente.

Los puntos de ajuste están establecidos inicialmente según la columna de valores predeterminados y se pueden ajustar en cualquier valor de la columna de rango.

Puntos de ajuste de nivel de unidad:

Descripción	Predeterminado	Rango		
Modo/Activación				
Activar unidad Activar Desactivar, Act			var	
Activar unidad de red	Desactivar	Desactivar, Activar	•	
Fuente de control	Local	Local, red		
Modos disponibles	Frío	Frío Frío con Glicol Frío/Hielo con Glicol Hielo	Calor Calor/Frío con Glicol Calor/Hielo con Glicol Prueba	
Mando del modo de red	Frío	Frío, Hielo		
Control de fase y capacidad				
LWT frío 1	7°C (44,6°F)	Consultar la secció	n 2.1	
LWT frío 2	7°C (44,6°F)	Consultar la secció	n 2.1	
LWT hielo	4,0°C (39,2°F)	de -15,0 a 4,0 °C (d	de 5 a 39,2 °F)	
Temperatura de agua saliente caliente 1	45°C (113°F)	Consultar la secció	Consultar la sección 2.1	
Temperatura de agua saliente	45°C (113°F)	Consultar la secció	n 2.1	

caliente 2		
Punto de ajuste de frío de red	7°C (44,6°F)	Consultar la sección 2.1
Punto de ajuste de hielo de red	4,0°C (39,2°F)	de -15,0 a 4,0 °C (de 5 a 39,2 °F)
Delta T de arranque	2,7°C (4,86°F)	de 0,6 a 8,3 °C (de 1,08 a 14.94 °F)
Delta T de cierre	1,7°C (3,06°F)	de 0,3 a 1,7 °C (de 0,54 a 3,06 °F)
Descenso máximo	1,7°C (3,06°F/min)	De 0,1 a 2,7 °C/min (de 0,18 a 4,86 °F/min)
Delta T del evaporador nominal	5,6 °C (10,08°F)	
Condensador de la unidad		
Objetivo del condensador 100%	38,0°C (100,4°F)	de 25 a 55 °C (de 77 a 131 °F)
Objetivo del condensador 67%	33,0°C (91,4°F)	de 25 a 55 °C (de 77 a 131 °F)
Objetivo del condensador 50%	30,0°C (86°F)	de 25 a 55 °C (de 77 a 131 °F)
Objetivo del condensador 33%	30,0°C (86°F)	de 25 a 55 °C (de 77 a 131 °F)
Configuración		`
Cant. de circuitos	2	1,2
Cant. de comp./circuito	3	2,3
Cant. de ventiladores tot.	5+5	4,5,6,3+3,4+4,5+5,6+6,7+7
Config. potencia	Punto único	Punto único, multipunto
Módulo com. 1	Ninguno	IP, LON, MSTP, Modbus
Móculo com. 2	Ninguno	IP, LON, MSTP, Modbus
Móculo com. 3	Ninguno	IP, LON, MSTP, Modbus
Opciones		
Frecuencia variab. de ventilador	Desactivar	Desactivar, Activar
Válvula LLS	Desactivar	Desactivar, Activar
Punto de ajuste doble	Desactivar	Desactivar, Activar
Reinicio de LWT	Desactivar	Desactivar, Activar
Límite de demanda	Desactivar	Desactivar, Activar
Alarma Ext	Desactivar	Desactivar, Activar
Medidor de potencia	Desactivar	Desactivar, Activar
Retroadaptar	Desactivar	Desactivar, Activar
Control de la bomba del evap.	1 únicamente	1 únicamente, 2 únicamente, automático, 1 primario, 2 primario
Temporizadores		, 1
Tempor. de recirc. del evap.	30 seg.	De 15 a 300 segundos
Demora de fase alta	240 seg.	De 120 a 480 segundos
Demora de fase baja	30 seg.	De 20 a 60 segundos
Eliminación de demora en fase	No	No, sí
Temporizador arranque-arranque	15 min	10-60 minutos
Temporizador de parada-arranque	5 min	3-20 minutos
Eliminar temporizadores de ciclo	No	No, sí
Demora de tiempo p/ hielo	12	1-23 horas
Tempor. para eliminación de hielo	No	No, sí
Desplazamientos de sensor		
Desplazamiento del sensor de	0,0°C (0°F)	De -5,0 a 5,0 °C (de -9,0 a 9,0 °F)
LWT evap.	, - \- ,	-,, (,,,-
Desplazamiento del sensor de	0.000 (005)	D- 50-5000(1-00-000)
temperatura de agua entrante evap.	0,0°C (0°F)	De -5,0 a 5,0 °C (de -9,0 a 9,0 °F)
Desplazamiento del sensor de OAT	0,0°C (0°F)	De -5,0 a 5,0 °C (de -9,0 a 9,0 °F)
Aiustas da alarma		
Ajustes de alarma	605 0 1 Do (00 25	Consultar la soción 5 1 1
Descarga de presión de evap. baja	685,0 kPa (99,35 psi)	Consultar la sección 5.1.1
Detención de presión de evap. baja	698,0 kPa (101,23 psi)	Consultar la sección 5.1.1

Presión alta del condensador	4000 kPa (580,15 psi)	De 3310 a 4300 kPa (de 480 a 623 psi)
Presión alta del condensador (descarga)	3950 kPa (572,89 psi)	De 3241 a 4200 kPa (de 470 a 609 psi)
Prueba de flujo del evaporador	5 seg.	De 0 a 15 seg.
Tiempo máximo de recirculación	3 min	De 1 a 10 min
Congelamiento de agua del evaporador	2,0°C (35,6°F)	Consultar la sección 5.1.1
Tiempo de arranque de OAT bajo	165 seg.	De 150 a 240 seg
Bloqueo de ambiente bajo	-18,0°C (-0,4°F)	Consultar la sección 5.1.1
Configuración de alarma externa	Evento	Evento, Alarma
Borrar alarmas	Apagado	Apagado, encendido
Borrar alarmas de red	Apagado	Apagado, encendido

Los siguientes puntos de ajuste existen de forma individual para cada circuito:

	sten de forma individual para c	
Descripción	Predeterminado	Rango
Modo/Activación		
Modo de circuito	Activar	Desactivar, activar, probar
Activar compresor 1	Activar	Activar, desactivar
Activar compresor 2	Activar	Activar, desactivar
Activar compresor 3	Activar	Activar, desactivar
Activar compresor 1 de red	Activar	Activar, desactivar
Activar compresor 2 de red	Activar	Activar, desactivar
Activar compresor 3 de red	Activar	Activar, desactivar
Control de EXV	Automático	Automático, manual
Presión manual EXV	Consultar la sección 3.7.4	
Objetivo de frío SH de succión	5,0°C (41°F)	De 4,44 a 6,67 °C (de 8 a 12 °F)
Objetivo de calor SH de succión	5,0°C (41°F)	De 4,44 a 6,67 °C (de 8 a 12 °F)
Presión de evap. máx.	1076 kPa (156,1 psi)	De 979 a 1172 kPa (de 142 a 170 psi)
Condensador de circuito		
Objetivo del condensador 100%	38,0°C (100,4°F)	de 25 a 55 °C (de 77 a 131 °F)
Objetivo del condensador 67%	33,0°C (91,4°F)	de 25 a 55 °C (de 77 a 131 °F)
Objetivo del condensador 50%	30,0°C (86°F)	de 25 a 55 °C (de 77 a 131 °F)
Objetivo del condensador 33%	30,0°C (86°F)	de 25 a 55 °C (de 77 a 131 °F)
Velocidad máxima de frecuencia variable	100%	De 60 a 110%
Velocidad mín. VFD	25%	Del 25 al 60%
Banda muerta 1 de fase alta de vent.	8,33°C (15°F)	De 0 a 15 °C (de 0 a 27 °F)
Banda muerta 2 de fase alta de vent.	5,56°C (10°F)	De 0 a 15 °C (de 0 a 27 °F)
Banda muerta 3 de fase alta de vent.	5,56°C (10°F)	De 0 a 15 °C (de 0 a 27 °F)
Banda muerta 4 de fase alta de vent.	5,56°C (10°F)	De 0 a 15 °C (de 0 a 27 °F)
Banda muerta 1 de fase baja de vent.	11,11°C (20°F)	De 0 a 15 °C (de 0 a 27 °F)
Banda muerta 2 de fase baja de vent.	11,11°C (20°F)	De 0 a 15 °C (de 0 a 27 °F)
Banda muerta 3 de fase baja de vent.	8,33 °C (15 °F)	De 0 a 15 °C (de 0 a 27 °F)
Banda muerta 4 de fase baja de vent.	5,56 °C (10 °F)	De 0 a 15 °C (de 0 a 27 °F)
Desplazamientos de sensor		
Desplazamiento de presión de evap.	0 kPa (0 psi)	De -100 a 100 kPa (de -14,5 a 14,5 psi)
Desplazamiento de presión de	0 kPa (0 psi)	De -100 a 100 kPa (de -14,5 a 14,5 psi)

cond.		
Desplazamiento de temp. de succión	0°C (0°F)	De -5,0 a 5,0 °C (de -9,0 a 9,0 °F)

Nota: el objetivo de condensador 67% y el objetivo de condensador 33% sólo estarán disponibles cuando el número de compresores es 3 (1 circuito) o 6 (2 circuitos). El objetivo de condensador 50% sólo estarán disponibles cuando el número de compresores es 2 (1 circuito) o 4 (2 circuitos).

4.14 Rangos autoajustados

Algunas configuraciones poseen rangos diferentes de ajuste de acuerdo a otras configuraciones:

Punto de ajuste LWT frío 1, LWT frío 2 y frío de red			
Selección de modo disponible Rango			
Sin glicol De 4,0 a 15,0 °C (de 39,2 a 59,0 °F)			
Con glicol	De -15,0 a 15,0 °C (de 5 a 59,0 °F)		

Congelamiento de agua del evaporador	
Selección de modo disponible	Rango
Sin glicol	De 2,0 a 5,6 °C (de 35,6 a 42 °F)
Con glicol	De -17,0 ^(*) a 5,6 °C (de 1,4 a 42 °F)

Presión baja de evaporador (detenido y descarga)			
Selección de modo disponible	Rango		
Sin glicol	De 669 a 793 kPa (de 97 a 115 psi)		
Con glicol	De 300 a 793 kPa (de 43,5 a 115		
	psi)		

Bloqueo de ambiente bajo	
VFD de ventilador	Rango
= no para todos los circuitos	De -18,0 a 15,6 °C (de -0,4 a 60 °F)
= sí en algún circuito	De -23,3 a 15,6 °C (de -9,9 a 60 °F)

^(*) Se debe aplicar la cantidad adecuada de anticongelante

4.15 Operaciones de punto de ajuste especiales

Los siguientes puntos de ajuste no se pueden cambiar a no ser que el interruptor de la unidad esté apagado:

Cant. de circuitos

Número de compresores

Cant. de ventiladores

Activar VFD del ventilador: activar la gestión de la ventilación con el VFD Activar válvula LLS: activar el control de la válvula solenoide de la línea de líquido

Activar punto de ajuste doble: habilitar la activación del punto de ajuste doble mediante una entrada

digital

Activar reinicio de LWT: activar el reinicio del punto de ajuste de LWT mediante una señal externa de 4-20

mA

Habilitar límite de demanda: habilitar la rutina de límite de demanda

Habilitar alarma ext: habilitar la señal de alarma como salida digital del controlador

Habilitar el medidor de potencia: habilitar la comunicación (Modbus) con un medidor de energía

Habilitar la retroadaptación: habilitar las posibilidades de retroadaptación de la aplicación para

una unidad EWYQ-F- C detenida

Los puntos de ajuste del modo de circuito no se pueden cambiar a no ser que el interruptor del circuito correspondiente esté apagado.

Los puntos de ajuste del modo de circuito no se pueden cambiar a no ser que el compresor correspondiente no esté funcionando.

Los ajustes siguientes se vuelven a ajustar automáticamente a apagado después de estar en encendido durante 1 segundo:

D-EOMHP00607-14ES - 41/78

Borrar alarmas Borrar alarmas de red Eliminar temporizadores de ciclo Tempor. para eliminación de hielo Eliminación de demora en fase Prueba HP Puntos de ajuste del modo de prueba

Todas las salidas se pueden controlar manualmente con el modo de prueba; los puntos de ajuste sólo cuando el modo de prueba está activado.

Para las salidas del nivel de unidad, el modo de prueba sólo está habilitado cuando el modo de la unidad es de prueba. Para las salidas de circuitos el modo de prueba está activado cuando el modo de la unidad o el del circuito es de prueba. Las salidas del compresor son un caso especial y pueden permanecer encendidas 3 segundos antes de volver a ajustarse automáticamente en 'apagado'.

Cuando un modo de unidad deja de estar en prueba, todos los puntos de ajuste de modo de prueba de la unidad volverán a cambiarse a sus valores de 'apagado'. Cuando un modo de prueba deja de estar activado para un circuito, todos los puntos de ajuste de modo de prueba del circuito volverán a cambiarse a sus valores de 'apagado'.

5 Alarma

A no ser que se especifique lo contrario, las alarmas de la unidad no deberían activarse cuando el estado de la unidad esté APAGADO.

5.1 Descripciones de alarma de la unidad

Descripción	Tipo	Apagado	Reinicio	Nota
Falla de GFP / pérdida de voltaje de fase	Falla	Rápido	Automático	
Congelación de temperatura del agua apagada	Falla	Rápido	Manual	
Pérdida de flujo de agua	Falla	Rápido	Manual	Esta alarma puede estar activa independientemente del estado de la unidad. Sólo depende del estado de la bomba
Temperatura del agua invertida	Falla	Normal	Manual	
Bloqueo de OAT	Falla / Atención	Normal	Automático	AUTOMÁTICO de unidadFalla APAGADO de unidadAtención
Falla de sensor de LWT	Falla	Rápido	Manual	Esta alarma puede estar activa independientemente del estado de la unidad.
Falla de sensor de EWT	Falla	Normal	Manual	Esta alarma puede estar activa independientemente del estado de la unidad
Falla del sensor de OAT	Falla	Normal	Manual	
Alarma externa	Falla	Rápido	Manual	Esta alarma puede estar activa independientemente del estado de la unidad
Entrada incorrecta de límite de demanda	Atención	-	Automático	

Punto de reinicio de LWT incorrecto	Atención	-	Automático	
Evento externo	Evento	-	N/R	
Falla de control opcional de la unidad	Falla	-	Automático	
Falla exv módulo 1	Falla	-	Automático	
Falla exv módulo 2	Falla		Automático	
Falla bomba 1	Falla		Automático	
Falla bomba 2	Falla		Automático	
Error de configuración de la unidad	Falla		Automático	
Fallo de comunicación de la red del enfriador	Atención	-	Automático	Esta alarma puede estar activa independientemente del estado de la unidad
Pérdida de alimentación durante el funcionamiento	Evento	-	N/R	

5.2 Alarmas de falla de la unidad

5.2.1 Falla de GFP / pérdida de voltaje de fase

[Objetivo]

Comprobar la fase invertida, la falta de fase y la tensión desequilibrada.

[Activación]

• La entrada de PVM / GFP es "baja"

[Acción]

Apagado rápido de todos los circuitos en funcionamiento.

[Reinicio]

Reinicio automático cuando la entrada de PVM es alta o el punto de ajuste de PVM no coincide con el punto único durante al menos 5 segundos.

5.2.2 Congelación de del agua apagada

[Objetivo]

Reducir el riesgo de daños al enfriador debido a la congelación.

[Activación]

 $\begin{aligned} EWT < 2.8^{\circ}C & \text{ durante 5 segundos} \\ \mathbf{O} \\ LWT < 2.8^{\circ}C & \text{ durante 5 segundos} \end{aligned}$

[Acción]

Apagado rápido de todos los circuitos en funcionamiento.

[Reinicio]

Esta alarma puede borrarse manualmente mediante del teclado o el mando si las condiciones de activación dejan de existir.

Nombre	Clase	Unidad	Predeterminado	Mín.	Máx.
Congelación del agua	Unidad	°C	2,8	2,8	6,0
Congetación del agua	Unidad		2,8	-18,0	6,0

5.2.3 Pérdida de flujo de agua

Esta alarma puede estar activa independientemente del estado de la unidad. Sólo depende del estado de la bomba

[Objetivo]

Reducir el riesgo de daños al enfriador debido a la congelación o a condiciones inestables.

[Activación 1]

El estado de la bomba es FUNCIONAMIENTO

Y

El interruptor de flujo está abierto

Y

demora de 15 segundos

[Activación 2]

El estado de la bomba es Arranque

Y

han pasado 3 minutos

[Acción]

Apagado rápido de todos los circuitos en funcionamiento.

[Reinicio]

Esta alarma puede borrarse manualmente en cualquier momento mediante el teclado o a través del mando de reinicio de alarma de BAS.

Si se activara mediante la activación 1:

Cuando la alarma ocurre debido a este activador, puede reiniciarse automáticamente las primeras dos veces de cada día, y la tercera de forma manual.

En el caso de los reinicios automáticos, la alarma se reinicia automáticamente cuando el estado del evaporador vuelve a estar en FUNCIONAMIENTO. Esto significa que la alarma permanece activa mientras la unidad espera que haya flujo; y luego pasa por el proceso de recirculación una vez que se detecta la presencia de flujo. Una vez finalizada la recirculación, la bomba de agua entra en estado de Funcionamiento y la alarma se borra. Después de tres sucesos, se reinicia el contador de sucesos y el ciclo comienza nuevamente si se despeja la alarma de pérdida de flujo de reinicio manual.

Si se activara mediante la activación 2:

Si la alarma de pérdida de flujo ocurre debido a este activador, siempre es una alarma de reinicio manual.

Nombre	Clase	Unidad	Predeterminado	Mín.	Máx.
Prueba de flujo de agua	Unidad	Seg.	15	5	15
Tiempo máximo de recirculación	Unidad	Mín.	3	1	10

5.2.4 Protección contra la congelación de la bomba

[Objetivo]

Evitar la congelación del agua. Si la temperatura del agua baja del punto de ajuste inferior, la bomba debería arrancar independientemente de la operación del enfriador.

[Activación]

LWT < Punto de ajuste de congelación del agua

Y

La falla del sensor LWT no está activa

Y

El estado de la unidad es APAGADO Demora de 3 segundos

[Acción]

Bomba de arranque

[Reinicio]

Borrado automático cuando dejan de existir las condiciones de activación. O la bomba está apagada.

5.2.5 Temperatura del agua invertida

[Objetivo]

Detección de error de cableado. Mantener el control de LWT en la operación correcta.

[Activación]

- EWT < LWT 1°C en modo de enfriamiento
- LWT < EWT 1°C en modo de calentamiento

Y

- Al menos un estado de circuito está en FUNCIONAMIENTO
- Retardo de 60 segundos

[Acción]

Apagado normal (bombeo) de todos los circuitos en funcionamiento.

[Reinicio]

Esta alarma puede borrarse manualmente mediante del teclado o el mando si las condiciones de activación dejan de existir.

[Máscara]

Esta alarma se ignorará durante las siguientes operaciones.

- Operación de descongelación
- Operación de cambio de la válvula de 4 vías (hasta que la válvula de 4 vías vaya a la posición fija)

5.2.6 Bloqueo de OAT bajo

Esta alarma tiene dos acciones a emprender, que varían en función de las activaciones. También los puntos de ajuste varían basándose en la configuración VFD del ventilador y en el modo de funcionamiento del circuito.

[Objetivo]

Evita el funcionamiento de la unidad fuera del entorno operacional.

[Tipo de alarma]

Activación 1 --- Falla Activación 2 --- Atención [Activación 1]

OAT < Punto de ajuste de bloqueo de OAT bajo

Y

Al menos un circuito en funcionamiento

Y

Demora de 20 minutos

[Activación 2]

Para evitar el error de utilizar un sensor defectuoso, si la OAT está fuera de rango, esta alarma no debería activarse.

OAT < Punto de ajuste de bloqueo de OAT bajo

Y

Ningún circuito está funcionando

Y

El estado de la unidad es AUTOMÁTICO

Y

La falla del sensor OAT no está activa

Y

Demora de 60 segundos

[Acción]

Si se activara mediante la activación 1:

Apagado normal de todos los circuitos en funcionamiento como falla

Si se activara mediante la activación 2:

No se permite arrancar (Atención)

[Reinicio]

Borrado automático cuando OAT > Punto de ajuste de bloqueo de OAT bajo +2,5°C

Nombre	Clase	Unidad	Predeterminado	Mín.	Máx.	Nota
Bloqueo de OAT bajo	Unidad °C		2,0	2,0	15,0	Punto de ajuste (Enfriamiento sin VFD de ventilador)
		°C	2,0	-20,0	15,0	Punto de ajuste (Enfriamiento con VFD de ventilador)
			-17,0	-17,0	0,0	Punto de ajuste (Calentamiento)

5.2.7 Falla de sensor de LWT

Esta alarma puede estar activa independientemente del estado de la unidad.

[Rango]

Mínimo = -40°C, Máximo = 100°C

[Activación]

Fuera de rango durante 1 segundo

[Acción]

Apagado rápido de todos los circuitos en funcionamiento.

[Reinicio]

Esta alarma puede borrarse manualmente mediante el teclado o mediante el mando de BAS si el sensor vuelve dentro de rango durante 5 segundos.

D-EOMHP00607-14ES - 46/78

5.2.8 Falla de sensor de EWT

Esta alarma puede estar activa independientemente del estado de la unidad.

[Rango]

 $M\text{ínimo} = -40^{\circ}\text{C}, \text{Máximo} = 100^{\circ}\text{C}$

[Activación]

Fuera de rango durante 1 segundo

[Acción]

Apagado rápido de todos los circuitos en funcionamiento.

[Reinicio]

Esta alarma puede borrarse manualmente mediante el teclado o mediante el mando de BAS si el sensor vuelve dentro de rango durante 5 segundos.

5.2.9 Falla del sensor de OAT

[Rango]

Mínimo = -40° C. Máximo = 70° C

[Activación]

Fuera de rango durante 1 segundo

Y

El estado de la unidad es AUTOMÁTICO

[Acción]

Apagado normal de todos los circuitos en funcionamiento

[Reinicio]

Esta alarma puede borrarse manualmente mediante el teclado o mediante el mando de BAS si el sensor vuelve dentro de rango.

5.2.10 Alarma externa

Esta alarma puede estar activa independientemente del estado de la unidad.

[Activación]

La entrada de la alarma externa está abierta durante 5 segundos

[Acción]

Apagado rápido de todos los circuitos en funcionamiento.

[Reinicio]

Esta alarma puede borrarse manualmente mediante del teclado o el mando si las condiciones de activación dejan de existir.

5.3 Alarmas de advertencia de la unidad

5.3.1 Entrada incorrecta de límite de demanda

[Activación]

Entrada límite de demanda fuera de rango (rango: 4-20mA) durante 1 segundo

Y

Límite de demanda activado

[Acción]

Ignorar el límite de demanda

[Reinicio]

Borrado automático cuando el límite de demanda está desactivado o la entrada de límite de demanda vuelve dentro de rango durante 5 segundos.

5.3.2 Punto de reinicio de LWT incorrecto

[Activación]

Entrada de reinicio de LWT fuera de rango (rango: 4-20mA) durante 1 segundo

7

Ajuste de reinicio de LWT = 4-20mA

[Acción]

Ignorar el reinicio de LWT.

[Reinicio]

Borrado automático cuando el ajuste de reinicio de LWT está dentro de 4-20mA o la entrada de reinicio de LWT vuelve dentro de rango durante 5 segundos.

5.3.3 Lectura incorrecta de la corriente de la unidad

[Activación]

Entrada de corriente fuera de rango (rango: 4-20mA) durante 1 segundo

Y

Activación del límite de corriente cuando se cierra la entrada digital

Y

Tipo límite de corriente ajustado a CT (4-20mA)

[Acción]

Ignorar el límite de corriente.

[Reinicio]

Borrado automático si las condiciones dejan de existir durante 5 segundos.

5.3.4 Fallo de comunicación de la red del enfriador

[Activación]

El punto de ajuste de la red del enfriador está activado

Y

La comunicación del bus de proceso ha fallado

Y

Demora de 30 segundos

[Acción]

Varía según el ajuste maestro / esclavo.

Para la unidad maestra

Si la unidad aún tiene comunicación con al menos un esclavo debería funcionar como en la red. De lo contrario, debería funcionar como autónoma.

Para la unidad esclava

Si la unidad aún tiene comunicación con el maestro debería funcionar como en la red. De lo contrario, debería funcionar como autónoma.

[Reinicio]

Borrado automático si las condiciones dejan de existir durante 5 segundos.

5.4 Eventos de la unidad

5.4.1 Pérdida de alimentación durante el funcionamiento

[Activación]

El sistema de control se reinicia tras perder potencia mientras el compresor estaba funcionando

[Acción] Ninguno [Reinicio] N/R

5.5 Alarma de circuito

A no ser que se especifique lo contrario, la alarma de circuito no debería activarse cuando el estado del circuito sea APAGADO.

5.5.1 Descripciones de alarma del circuito

Descripción	Tipo	Apagado	Reinicio	Nota
Interruptor mecánico de presión alta	Falla	Rápido	Manual	
Apagado presión cond. alta	Falla	Rápido	Manual	
Detención presión cond. alta	Evento	-	Automático	
Apagado presión evap. baja	Falla	Rápido	Manual	
No hay cambio de presión tras el arranque	Falla	Rápido	Manual	
Falla de sensor de presión cond.	Falla	Rápido	Manual	
Falla de sensor de presión evap.	Falla	Rápido	Manual	
Falla del sensor de temp. succ.	Falla	Rápido	Manual	
Prot. motor cx	Falla	Rápido	Automático / manual	Después de 3 veces en 6 horas
Alarma por temp. descarga alta	Falla	Rápido	Automático / manual	
Falla de bombeo	Evento	-	Automático	
Presión de evap. baja descarga	Evento	-	Automático	
Presión de evap. baja detención	Evento	-	Automático	

5.5.2 Alarmas del circuito detalladas

5.5.2.1.1 Interruptor mecánico de presión alta

[Objetivo]

Para evitar el funcionamiento del circuito a presión por encima de la diseñada.

[Activación]

La entrada digital de MHP está abierta

El punto de ajuste de MHP es igual al 90% de la válvula de seguridad (90% de 4500 kPa = 4100 kPa).

[Acción]

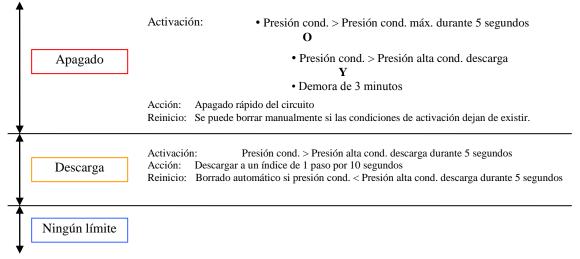
Apagado rápido del circuito

[Reinicio]

Esta alarma puede reiniciarse manualmente mediante el teclado si la entrada digital de MHP está cerrada.

5.5.2.1.2 Apagado/Descarga de la presión del condensador alta

[Objetivo]


Para evitar la activación alarma de falla HPS del circuito.

[Tipo de alarma]

Apagado --- Falla

Descarga, inhibir carga --- Evento

[Activaciones, Acciones y Reinicios]

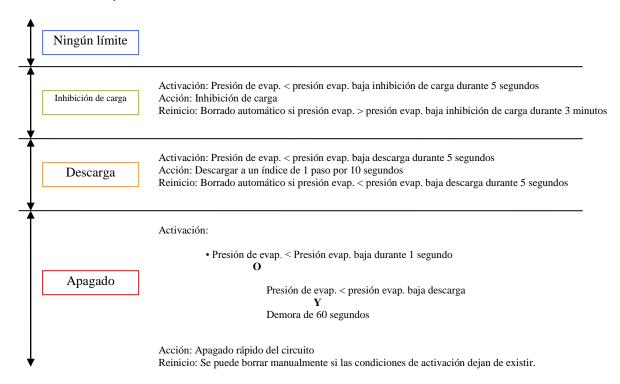
[Cálculos]

Se indica el límite en la tabla siguiente

Nombre	Clase	Unidad	Predeterminado	Mín.	Máx.
Parada de presión cond. alta	Unidad	kPa	4000	3900	4300
Descarga de presión cond. alta	Unidad	kPa	3900	3800	Punto de ajuste de parada de presión alta - 20

5.5.2.1.3 Apagado / Descarga / Inhibición de carga de presión evap. baja

[Objetivo]


Proteger el compresor en caso de pérdida de refrigerante o de rendimiento bajo del evaporador. Esta alarma funciona tanto en modo de calentamiento como de enfriamiento, aunque los intercambiadores de calor se trasladen.

[Tipo de alarma]

Apagado --- Falla

Descarga, inhibir carga --- Evento

[Activaciones, Acciones y Reinicios]

[Cálculos]

Se indica el límite en la tabla siguiente

Nombre	Clase	Unidad	Predeterminado	Mín.	Máx.
Presión evap. baja detener enfriamiento	Unidad	kPa	670	630	793
Presión evap. baja detener calentamiento	Unidad	kPa	325	300	400
Presión baja descarga enfriamiento	Unidad	kPa	650	600	793
Presión baja descarga calentamiento	Unidad	kPa	260	240	320
Alarma pres. baja	Unidad	kPa	200	200	630

[Máscara]

Estas lógicas se ignorarán o cambiarán durante las siguientes operaciones.

Funcionamiento del enfriador	Apagado	Descarga	Inhibición de carga
Fase de descongelación ciclo inverso 2,3,4,5,6 7	Ignorado	Ignorado	Ignorado
Fase de descongelación ciclo inverso 8	ignorauo	Normal	ignorado

5.5.2.1.4 No hay cambio de presión tras el arranque

[Objetivo]

Esta alarma previene que el compresor funcione si hay un bombeo insuficiente, indicando una falla del compresor

[Tipo de alarma]

Apagado --- Falla

[Activaciones, Acciones y Reinicios]

Pres. evap. en arranque de compresor – Pres. evap. real >= 7.0 kPa OPres. cond. real – Pres. cond. en arranque >= 35.0 kPa Y

30 seg. desde el arranque del compresor

[Acción]

Apagado rápido del circuito

[Reinicio]

Esta alarma puede borrarse manualmente mediante el teclado o mediante el mando de BAS si el sensor vuelve dentro de rango.

5.5.2.1.5 Falla de sensor de presión del condensador

[Rango]

Mínimo = 0 kPa, Máximo = 5000 kPa

[Activación]

Fuera de rango durante 1 segundo Y El estado de la unidad es AUTOMÁTICO

[Acción]

Apagado normal de todos los circuitos en funcionamiento

[Reinicio]

Esta alarma puede borrarse manualmente mediante el teclado o mediante el mando de BAS si el sensor vuelve dentro de rango.

5.5.2.1.6 Falla de sensor de presión del evaporador

[Rango]

Mínimo = 0 kPa, Máximo = 3000 kPa

[Activación]

Fuera de rango durante 1 segundo

El estado de la unidad es AUTOMÁTICO

[Acción]

Apagado normal de todos los circuitos en funcionamiento

[Reinicio]

Esta alarma puede borrarse manualmente mediante el teclado o mediante el mando de BAS si el sensor vuelve dentro de rango.

5.5.2.1.7 Falla de sensor de temperatura de succión

Esta alarma puede estar activa independientemente del estado de la unidad.

[Rango]

 $M\text{ínimo} = -40^{\circ}\text{C}, \text{Máximo} = 100^{\circ}\text{C}$

[Activación]

Fuera de rango durante 1 segundo

[Acción]

Apagado rápido de los circuitos en funcionamiento

[Reinicio]

Esta alarma puede borrarse manualmente mediante el teclado o mediante el mando de BAS si el sensor vuelve dentro de rango durante 5 segundos.

5.5.2.1.8 Alarma de protección del motor cx

Esta alarma protege el motor eléctrico de cada uno de los compresores. [Activación]

Entrada digital para los compresores kriwan activa

0

Entrada digital para los disyuntores térmicos activa

[Acción]

Apagado rápido de los circuitos en funcionamiento

[Reinicio]

Esta alarma tiene un reinicio automático para las primeras 3 veces en 6 horas para cada compresor. Después de 5 minutos vuelven a pasar por la alarma. Tras ello, la alarma se puede borrar manualmente mediante el teclado o el mando BAS.

5.5.2.1.9 Alarma por temperatura descarga alta

Esta alarma sirve para prevenir una temperatura de descarga demasiado alta desde el compresor

[Activación]

Temperatura de descarga > 135,0 °C

Y

5 segundos

[Acción]

Apagado rápido de los circuitos en funcionamiento

[Reinicio]

Esta alarma puede borrarse manualmente mediante el teclado o mediante el mando de BAS si la temperatura de descarga es superior a 100,0°C.

5.5.2.1.10 Falla de bombeo

Esta alarma controla que la operación de bombeo se haya completado en el tiempo adecuado.

[Activación]

Han pasado 2 minutos desde el arranque de las operaciones de bombeo.

6 Apéndice A: Especificaciones y calibraciones del sensor

6.1 Sensores de temperatura

Descripción	Número de sensores	Tipo	Rango	Calibración	Nota
EWT	1 por unidad	NTC10K	-40°C ~ 100°C	Desviación del punto de ajuste	Proveedor: Thermotech
LWT	1 por unidad	NTC10K	-40°C ~ 100°C	Desviación del punto de ajuste	Proveedor: Thermotech
OAT	1 por unidad	NTC10K	-40°C ~ 100°C	Desviación del punto de ajuste	Proveedor: Thermotech
Temp. succión	1 por Ckt	NTC10K	-40°C ~ 100°C	Desviación del punto de ajuste	Proveedor: Thermotech
Temp. descarga	1 por Ckt	NTC10K	-40°C ~ 150°C	Desviación del punto de ajuste	Proveedor: Thermotech

6.2 Transductores de presión

Descripción	Número de sensores	Tipo	Rango	Calibración	Nota
Pres. cond.	1 por Ckt	500mV ~ 4500mV	0kPa ~ 5000,0kPa	Desviación del punto de ajuste	Proveedor: Danfoss Saginomiya
Pres. evap.	1 por Ckt	500mV ~ 4500mV	0kPa ~ 3000,0kPa	Desviación del punto de ajuste	Proveedor: Danfoss Saginomiya

7 Apéndice B: Localización de fallas

Cuando se produce un problema, se deben comprobar todas las fallas posibles. Este capítulo ofrece una idea general de dónde buscar fallas. Además, se explican los procedimientos generales para la reparación del circuito de refrigeración y del circuito eléctrico.

7.1 FALLA PVM/GFP (en la pantalla: PvmGfpAl)

Objetivo:

- evitar la dirección de rotación incorrecta del compresor.
- evitar condiciones de funcionamiento no seguras a partir de un cortocircuito

Síntoma: todos los circuitos están detenidos y el icono de la campana se está moviendo en la pantalla del controlador							
CAU	USAS	AC	CIÓN CORRECTIVA	CONSECUENCIA			
1.	Pérdida de una fase;	1.	Comprobar el nivel de tensión de cada una de las fases;	Apagado rápido de todos los circuitos			
2.	Conexión de secuencia incorrecta de L1,L2,L3;	2.	Comprobar la secuencia de conexiones de L1, L2, L3 según la indicación en el				
3.	El nivel de tensión del panel de la unidad no está en el rango permitido (±10%);		esquema eléctrico del enfriador;				
4.	Hay un cortocircuito en la	3.	Comprobar que el nivel de tensión de cada				

unidad;	fase esté dentro del rango permitido	
	indicado en la etiqueta del enfriador;	
	Es importante comprobar el nivel de tensión	
	de cada fase no sólo con el enfriador no en	
	funcionamiento, sino también en	
	funcionamiento desde una capacidad	
	mínima hasta la capacidad total. Esto se	
	debe a pueden producirse bajadas de tensión	
	a un cierto nivel de capacidad de	
	enfriamiento de la unidad o debido a unas	
	ciertas condiciones de funcionamiento (por	
	ej., valores altos de OAT);	
	En estos casos el problema puede estar	
	relacionado con las dimensiones de los	
	cables de alimentación.	
	4. Communication conditions de sistemiente	
	Comprobar las condiciones de aislamiento eléctrico del circuito de cada unidad con un	
	megóhmetro	

REINICIO: Reinicio automático cuando la entrada lleva cerrada al menos 5 segundos o si la configuración de potencia = Multipunto.

7.2 PÉRDIDA DE FLUJO DEL OPERADOR (en la pantalla: EvapFlowLoss)

Objetivo:

- Evitar los riesgos de congelación del agua en el evaporador del enfriador;
- Prevenir que el enfriador arranque sin condiciones adecuadas de flujo de agua en el evaporador.

Síntoma: todos los circuitos están detenidos y el icono de la campana se está moviendo en la pantalla del controlador						
CAUSAS	ACCIÓN CORRECTIVA	CONSECUENCIA				
No hay flujo de agua durante 5 segundos de forma continua o flujo de agua demasiado bajo.	Comprobar si hay obstrucciones en el filtro de la bomba de agua y en el circuito del agua.	Apagado rápido de todos los circuitos				
REINICIO: Tras encontrar la causa, el interruptor de flujo se restablece automáticamente,						
pero el controlador aún necesita ser reiniciado.						

7.3 PROTECTOR CONTRA LA CONGELACIÓN DEL AGUA DEL OPERADOR (en la pantalla: EvapWaterTmpLo)

Objetivo:

• Prevenir la congelación del agua en el operador con posibles daños mecánicos

NOTA: la regulación de la temperatura de protección contra la congelación del refrigerante depende de si la unidad es una aplicación con glicol o no

Síntoma: todos los circuitos están detenidos y el icono de la campana se está moviendo en la pantalla del controlador			
CAUSAS	ACCIÓN CORRECTIVA	CONSECUENCIA	
Flujo de agua demasiado bajo;	Aumentar el flujo del agua;	Apagado rápido de todos los circuitos	
La temperatura de entrada al evaporador es	Aumentar la temperatura del agua de entrada;		
demasiado baja; 3. El cambio de flujo no	3. Comprobar el cambio de flujo y la bomba del		

agua; 4. Comprobar el flujo del
4 7
4. La temperatura del agua y el filtro. Malas
refrigerante es demasiado condiciones de
baja (< -0,6°C); intercambio en el
operador.

REINICIO: Esta alarma puede borrarse manualmente mediante el teclado, pero sólo si las condiciones de la alarma dejan de existir.

7.4 FALLA DEL SENSOR DE TEMPERATURA

Este apartado se refiere a los siguientes temas:

- FALLA DEL SENSOR DE LWT DEL EVAPORADOR (en la pantalla: EvapLwtSenf)
- FALLA DEL SENSOR DE TEMPERATURA DE CONGELACIÓN (en la pantalla: FreezeTempSenf)
- FALLA DEL SENSOR DE TEMPERATURA DEL AIRE EXTERNO (OAT) (en la pantalla: OatSenf)

Objetivo:

• Comprobar las condiciones adecuadas de funcionamiento de los sensores de temperatura para permitir unas condiciones de funcionamiento adecuadas y seguras del enfriador

CAUSAS	ACCIÓN CORRECTIVA	CONSECUENCIA
 El sensor está roto; Cortocircuito en el sensor; El sensor está mal conectado (abierto); 	 Comprobar la integridad del sensor; Comprobar el funcionamiento correcto del sensor según la tabla y el rango permitido kOhm (kΩ) en la sección 3.2 de este apartado del manual. Comprobar si el sensor ha sufrido un cortocircuito con una medición de la resistencia; Comprobar la ausencia de agua o humedad en los contactos eléctricos; Comprobar si los conectores eléctricos están enchufados correctamente; Comprobar si el cableado del sensor es correcto según el esquema eléctrico. 	Apagado normal de todos los circuitos

REINICIO: Esta alarma puede reiniciarse manualmente mediante el teclado o el mando BAS, pero solo si el sensor está nuevamente dentro del rango.

7.5 ALARMA o ADVERTENCIA EXTERNA (en la pantalla: ExtAlarm)

Objetivo:

• Prevenir daños al enfriador debido a eventos externos o a alarma externa

CAUSAS	ACCIÓN CORRECTIVA	CONSECUENCIA
Se ha producido un evento externo que ha causado la apertura, durante al menos 5 segundos, del puerto del panel del controlador.	Comprobar las causas de la alarma o evento externo. Comprobar el cableado eléctrico desde el controlador de la unidad hasta el equipo externo en caso de que se hayan producido alarmas o eventos externos.	Este fallo tendrá una consecuencia según la configuración de USUARIO del evento externo como una ALARMA o ADVERTENCIA. En caso de configuración de ALARMA, la consecuencia es una parada rápida de todos los circuitos.

REINICIO: Borrado automático cuando una entrada digital de una alarma/evento externo se vuelve a cerrar.

7.6 ACCIÓN CORRECTIVA

Cuando está activa cualquier alarma de falla del circuito, la salida digital de la alarma se activa. Si no hay ninguna alarma de falla de unidad activa, pero cualquier alarma de circuito de alarma está activa, la salida digital de la alarma se alterna cinco segundos encendida y cinco segundos apagada continuamente.

Todas las alarmas aparecen en la lista de alarmas activas mientras están activas. Todas las alarmas se añaden al registro de alarmas cuando se activan y cuando se borran.

	MF	ENÚ DE FALLAS DEL CIRCUITO DEL MENSAJE	MENSAJE COMO SE MUESTRA EN LA PANTALLA
	1	Presión baja del evaporador	LowEvPr
	2	Presión alta del condensador	HighCondPr
	3	Interruptor mecánico de presión alta	CoX.MhpAl
	4	Falla de protección del motor	CoX.MotorProt
LISTA DE FALLAS	5	Falla de reinicio con OAT baja	CoX.RestartFlt
DEL	6	No hay cambio de presión tras el arranque	NoPrChgAl
CIRCUITO	7	Falla de sensor de presión del evaporador	EvapPsenf
	8	Falla de sensor de presión del condensador	CondPsenf
	9	Falla de sensor de temperatura de succión	SuctTsenf
	10	Falla com. módulo 1 EXV	EvPumpFlt1
	11	Falla com. módulo 2 EXV	EvPumpFlt2

7.6.1 PRESIÓN BAJA DEL EVAPORADOR (en la pantalla: LowEvPr)

Objetivo:

- Evitar las condiciones incorrectas de funcionamiento del circuito, con mala eficiencia.
- Evitar el riesgo de congelación del evaporador de la unida

NOTA: la regulación de la temperatura de protección contra la congelación del refrigerante depende de si la unidad es una aplicación con glicol o no

Síntoma: los circuitos están detenidos y el icono de la campana se está moviendo en la pantalla del controlador			
CAUSAS	ACCIÓN CORRECTIVA	CONSECUENCIA	
El flujo de agua al intercambiador de calor de agua es demasiado bajo;	Aumentar el flujo del agua; Comprobar si hay fugas y añadir refrigerante si es necesario;	Apagado rápido de los circuitos	
2. Escasez de refrigerante;	Comprobar las condiciones de funcionamiento del		
 La unidad está funcionando fuera de su rango posible o de su ámbito operativo; 	enfriador; 4. Aumentar la temperatura del agua de entrada;		
La temperatura de entrada al intercambiador de calor de agua es	5. Limpiar el evaporador y comprobar la calidad del fluido que entra en el intercambiador de calor;6. Consultar los "parámetros		
demasiado baja; 5. Evaporador sucio; 6. Configuración de	de ajuste" de este manual para comprobar el rango permitido de "temperatura		
seguridad de presión baja demasiado alta;	mínima del agua de salida"; 7. Comprobar el cambio de		
7. El cambio de flujo no funciona o no hay flujo de agua;	flujo y el funcionamiento correcto de la bomba de agua;		
8. EEXV no está funcionando correctamente, por ej., no se abre lo	8. Comprobar el funcionamiento correcto de la válvula de expansión (EXV) del circuito;		
suficiente; 9. El sensor de presión baja no funciona correctamente;	9. Comprobar el funcionamiento correcto del sensor de presión baja; consultar la sección 3.1		

REINICIO: Esta alarma puede reiniciarse manualmente mediante el teclado si la presión del evaporador vuelve al rango permitido.

7.6.2 ALARMA DE PRESIÓN ALTA DEL CONDENSADOR

Este apartado se refiere a los siguientes temas:

- PRESIÓN ALTA DEL CONDENSADOR (en la pantalla: HighCondPr)
- INTERRUPTOR DE PRESIÓN MECÁNICA ALTA (MHP) (en la pantalla: CoX.MhpAl)

Objetivo:

- Evitar las condiciones incorrectas de funcionamiento del circuito, reduciendo la eficiencia.
- Proteger el enfriador de problemas de sobrepresión que podrían dañar los componentes de la unidad.

Síntoma: los circuitos están detenidos y el icono de la campana se está moviendo en la pantalla del controlador				
CAUSAS	ACCIÓN CORRECTIVA	CONSECUENCIA		
1. Uno o varios ventiladores del condensador no funcionan adecuadamente; 2. Bobina del condensador sucia o parcialmente bloqueada; 3. La temperatura del aire de entrada del condensador es demasiado alta; 4. Uno o varios ventiladores del condensador giran en la dirección incorrecta; 5. Carga excesiva de refrigerante en la unidad; 6. El sensor de presión alta no puede funcionar correctamente	1. Comprobar si los ventiladores giran libremente; Limpiar si es necesario; Comprobar que no haya obstáculos en la salida libre del aire. 2. Quitar todos los obstáculos y limpiar la bobina del condensador utilizando un cepillo suave y un soplador; 3. La temperatura del aire medida en la entrada del condensador puede no superar el límite indicado en el rango operativo (ámbito de funcionamiento) del enfriador; Comprobar el lugar en el que está instalada la unidad y que no haya cortocircuitos en el aire caliente soplado desde los ventiladores del mismo circuito o incluso desde los ventiladores de los enfriadores cercanos; 4. Comprobar la secuencia de fase correcta (L1, L2, L3) en las conexiones eléctricas de los ventiladores; 5. Comprobar el subenfriamiento de succión para controlar indirectamente la carga correcta de refrigerante. Si es necesario, recuperar todo el refrigerante para pesar toda la carga y comprobar si la válvula está en línea con la indicación en kg de la etiqueta de la unidad. 6. Comprobar el funcionamiento correcto del sensor de presión alta; consultar la sección 3.1	Apagado rápido de los circuitos		

REINICIO: Esta alarma puede reiniciarse manualmente mediante el teclado del controlador.

7.6.3 FALLA DE PROTECCIÓN DEL MOTOR (en la pantalla: CoX.MotorProt)

Objetivo:

• Evitar daños en el motor eléctrico del compresor y también un daño potencial en partes mecánicas del compresor.

La falla se activa tanto con el exceso de temperatura de descarga del compresor como por exceso de temperatura del motor eléctrico del compresor, que no está lo suficientemente enfriado por el vapor del refrigerante de baja presión.

Síntoma: los circuitos están deter pantalla del controlador	nidos y el icono de la campana se está	í moviendo en la
CAUSAS	ACCIÓN CORRECTIVA	CONSECUENCIA
	1. Comprobar los fusibles de la alimentación eléctrica o medir la tensión de alimentación; 2. Medir la tensión de alimentación no sólo con la unidad parada, sino también con la unidad en funcionamiento. La tensión desciende con las absorciones de corriente. Por tanto, la tensión desciende cuando la unidad está funcionando. 3. Asegurarse de que la unidad funciona dentro de su ámbito de funcionamiento permitido (temperatura ambiente demasiado alta o temperatura del agua demasiado alta); 4. Intentar restablecer y reiniciar. Asegurarse de que el motor del compresor no esté bloqueado. 5. Comprobar el cableado utilizando un megóhmetro si es necesario para evaluar el nivel de aislamiento	CONSECUENCIA Apagado rápido de los circuitos
	eléctrico; 6. Comprobar el cableado y la secuencia correcta de fases (L1, L2, L3) según el esquema eléctrico; 7. Comprobar la cantidad y la calidad de aceite correctas en los compresores;	
	calidad de aceite correctas	

podría estar relacionada con problemas mecánicos potenciales en los compresores.
8. Comprobar que los sensores de temperatura funcionen correctamente. Consultar la sección 3.2;
9. Asegurarse de que no haya fugas de refrigerante y comprobar si la carga de refrigerante de la unidad es correcta. Si es necesario, recargar la unidad con refrigerante tras reparar las fugas.

REINICIO: Esta alarma puede borrarse manualmente mediante el teclado del controlador si la entrada de protección del motor está cerrada.

7.6.4 FALLA DE REINICIO DE TEMPERATURA AMBIENTE EXTERIOR (OAT) BAJA

(en la pantalla: CoX.RestartFlt)

Objetivo:

• Evitar condiciones de funcionamiento inadecuadas del enfriador, con presión de condensación demasiado baja.

pantalla del controlador CAUSAS	ACCIÓN CORRECTIVA	CONSECUENCIA
 La temperatura ambiente externa es demasiado baja o es inferior al valor establecido en el controlador de la unidad; Escasez de refrigerante; Funcionamiento incorrecto del sensor de presión alta o incluso del sensor de presión baja 	 Comprobar el motivo de la solicitud de producción de agua enfriada incluso con temperatura ambiente exterior baja. Después comprobar si la aplicación y el uso del enfriador son adecuados; Comprobar la carga del refrigerante de la unidad; Comprobar el funcionamiento adecuado del sensor de presión alta y baja. Consultar la sección 3.1; 	Apagado rápido de los circuitos
	NOTA: sin embargo, en cualquier caso, intentar restablecer esta alarma de circuito dos o tres veces y reiniciar de nuevo el enfriador.	

REINICIO: Esta alarma puede reiniciarse manualmente mediante el teclado o el mando BAS.

7.6.5 NO HAY CAMBIO DE PRESIÓN TRAS EL ARRANQUE (en la pantalla: NoPrChgAl)

Objetivo:

• Evitar el funcionamiento del compresor con una falla interna.

CAUSAS	ACCIÓN CORRECTIVA	CONSECUENCIA
 Fusibles del compresor fundidos; Los disyuntores del compresor están abiertos o el compresor no está alimentado; El motor tiene problemas eléctricos del motor o mecánicos internos; El compresor está girando en la dirección incorrecta; El circuito refrigerante está vacío de refrigerante; 	 Comprobar los fusibles; Comprobar el estado de los disyuntores; Comprobar el funcionamiento correcto del dispositivo eléctrico de arranque del compresor (arrancador suave, etc.); Comprobar el estado del compresor si el motor está bloqueado; Comprobar que la secuencia de fases (L1, L2, L3) sea correcta según el esquema eléctrico; Comprobar la presión del circuito y la presencia de refrigerante; Nº 6 retirado – irrelevante 	Apagado rápido de los circuitos

7.6.6 FALLA DEL SENSOR DE PRESIÓN DEL EVAPORADOR (en la pantalla: EvapPsenf)

Este apartado se refiere a los siguientes temas:

- FALLA DEL SENSOR DE PRESIÓN DEL EVAPORADOR (en la pantalla: EvapPsenf)
- FALLA DEL SENSOR DE PRESIÓN DEL CONDENSADOR (en la pantalla: CondPsenf)

Objetivo:

• Evitar las condiciones de funcionamiento inadecuadas del enfriador.

Síntoma: los circuitos están detenidos y el icono de la campana se está moviendo en la pantalla del controlador		
CAUSAS	ACCIÓN CORRECTIVA	CONSECUENCIA
El sensor está roto; Circuito cerrado en el sensor Circuito abierto en el sensor	Comprobar la integridad del sensor; Comprobar el funcionamiento correcto del sensor según el rango mVolt (mV) relacionado con los valores de presión en kPa, como se muestra en la sección 3.1 de este manual Comprobar si el sensor ha sufrido un cortocircuito con una	Apagado rápido de los circuitos

	medición de la resistencia;	
3	Comprobar la instalación correcta del sensor en la tubería del circuito de refrigerante.	
	Comprobar la ausencia de agua o humedad en los contactos eléctricos del sensor; Comprobar si los conectores eléctricos están enchufados	
	correctamente; Comprobar si el cableado del sensor es correcto según el esquema eléctrico.	

REINICIO: Esta alarma puede reiniciarse manualmente mediante el teclado o el mando BAS, pero solo si el sensor está nuevamente dentro del rango.

7.6.7 FALLA DEL SENSOR DE TEMPERATURA DE SUCCIÓN (en la pantalla: SuctTsenf)

Objetivo:

• Evitar condiciones inadecuadas de funcionamiento del compresor, con condiciones de enfriamiento insuficientes del motor eléctrico del compresor.

CAUSAS	ACCIÓN CORRECTIVA	CONSECUENCIA
El sensor está roto;	Comprobar la integridad del sensor; Comprobar el funcionamiento	Apagado normal de los circuitos
2. Circuito cerrado en el sensor	correcto de los sensores según el rango kOhm (kΩ) relacionado con los valores de	
3. Circuito abierto en el sensor	temperatura, como se muestra en la sección 3.2 de este manual	
	Comprobar si el sensor ha sufrido un cortocircuito con una medición de la resistencia;	
	3. Comprobar la instalación correcta del sensor en la tubería del circuito de refrigerante. Comprobar la ausencia de agua o humedad en los contactos eléctricos del sensor; Comprobar si los conectores eléctricos están enchufados correctamente; Comprobar si el cableado del	
	sensor es correcto según el esquema eléctrico.	

7.6.8 FALLA COM. MÓDULO 1/2 EXV (en la pantalla: EvPumpFlt1)

Objetivo:

• Evitar condiciones inadecuadas de funcionamiento del compresor, con enfriamiento insuficiente del motor eléctrico del compresor.

Síntoma: los circuitos están detenidos y el icono de la campana se está moviendo en la pantalla del controlador				
CAUSAS	ACCIÓN CORRECTIVA	CONSECUENCIA		
La comunicación con el módulo de extensión de E/S ha fallado;	Comprobar la conexión del bus periférico entre el controlador principal y el módulo de extensión de E/S. Consultar la sección 2.2 de este manual	Apagado rápido del circuito		
REINICIO: Esta alarma puede reiniciarse manualmente mediante el teclado o el mando				

REINICIO: Esta alarma puede reiniciarse manualmente mediante el teclado o el mando BAS cuando la comunicación entre el controlador principal y el módulo de extensión funciona por 5 segundos.

7.7 Visión general de la alarma de problema

Esta sección proporciona información útil para diagnosticar y corregir ciertos problemas que pueden suceder en la unidad.

Antes de iniciar el procedimiento de localización de fallas, realizar una inspección visual minuciosa de la unidad y buscar defectos evidentes como conexiones sueltas o cableado defectuoso.

Al realizar una inspección del panel de suministro o de la caja de seccionamiento de la unidad, asegurarse siempre de que el disyuntor de la unidad esté apagado.

Visión general de los problemas de la unidad

LICTADE	MENSAJE MENÚ DE PROBLEMAS DE LA UNIDAD		MENSAJE COMO SE MUESTRA EN LA PANTALLA
LISTA DE PROBLEMAS	1	Bloqueo de ambiente bajo	LowOATemp
DE LA UNIDAD	2	Falla de la bomba del operador 1	EvPumpFlt1
	3	Falla de la bomba del operador 2	EvPumpFlt2

7.7.1 BLOQUEO DE AMBIENTE BAJO (en la pantalla: LowOATemp)

Objetivo:

• Evitar condiciones de funcionamiento inadecuadas del enfriador, con presión de condensación demasiado baja.

Síntoma: la unidad está detenida y el icono de la campana se está moviendo en la pantalla del controlador				
CAUSAS ACCIÓN CORRECTIVA CONSECUENCIA				
La temperatura ambiente externa es	Comprobar el valor mínimo de temperatura ambiente	Apagado normal de todos los circuitos.		

inferior al valor establecido en el controlador de la unidad; 2. El sensor de temperatura ambiente exterior no funciona adecuadamente	exterior ajustado en el controlador de la unidad; Comprobar si este valor cumple la aplicación del enfriador. Después comprobar la aplicación adecuada y el uso del enfriador; 2. Comprobar si el sensor de la OAT funciona adecuadamente según el rango kOhm (kΩ) relacionado con los valores de temperatura; También consultar la acción correctiva indicada en la sección 3.2 de este manual	
--	--	--

REINICIO: El bloqueo debería reiniciarse cuando la OAT asciende hasta el punto de ajuste de bloqueo más 2,8°C.

7.7.2 FALLA DE LA BOMBA 1 DEL EVAPORADOR (en la pantalla: EvPumpFlt1)

Objetivo:

• Evitar las condiciones de funcionamiento inadecuadas del enfriador, con riesgo de flujo incorrecto en el evaporador.

CAUSAS	ACCIÓN CORRECTIVA	CONSECUENCIA
1. La bomba nº 1 no funciona;	1. Comprobar si existen problemas en el cableado eléctrico de la bomba 1; Comprobar que el disyuntor eléctrico de la bomba 1 esté ENCENDIDO; Comprobar si hay problemas en la conexión del cableado entre el arrancador de la bomba y el controlador de la unidad; Comprobar si hay obstrucciones en el filtro de la bomba y en el circuito de agua.	Se utiliza la bomba de respaldo.

7.7.3 FALLA DE LA BOMBA 2 DEL EVAPORADOR (en la pantalla: EvPumpFlt2)

Objetivo:

• Evitar las condiciones de funcionamiento inadecuadas del enfriador, con riesgo de flujo incorrecto en el evaporador.

CAUSAS	ACCIÓN CORRECTIVA	CONSECUENCIA
La bomba nº 2 no funciona;	1. Comprobar si existen problemas en el cableado eléctrico de la bomba 2; Comprobar que el disyuntor eléctrico de la bomba 2 esté ENCENDIDO; Comprobar si hay problemas en la conexión del cableado entre el arrancador de la bomba y el controlador de la unidad; Comprobar si hay obstrucciones en el filtro de la bomba y en el circuito de agua.	Se utiliza la bomba de respaldo o se paran todos los circuitos en caso de fallo de la bomba 1.

7.8 Visión general de la alarma de advertencia

Esta sección proporciona información útil para diagnosticar y corregir ciertas advertencias que se pueden producir en la unidad.

Antes de iniciar el procedimiento de localización de fallas, realizar una inspección visual minuciosa de la unidad y buscar defectos evidentes como conexiones sueltas o cableado defectuoso.

Al realizar una inspección del panel de suministro o de la caja de seccionamiento de la unidad, asegurarse siempre de que el disyuntor de la unidad esté apagado.

7.8.1 Alarmas de advertencia de la unidad

		SAJE MENÚ DE ADVERTENCIAS DE NIDAD	MENSAJE COMO SE MUESTRA EN LA PANTALLA
LISTA DE	1	Evento externo	ExternalEvent
ADVERTENCIAS DE LA UNIDAD	2	Entrada incorrecta de límite de demanda	BadDemandLmInpW
	3	Entrada incorrecta de reinicio de temperatura del agua saliente (LWT)	BadSPtOvrdInpW

	4	Falla del sensor de temperatura del agua de entrada del evaporador (EWT)	EvapEwtSenf
--	---	--	-------------

7.8.2 EVENTO EXTERNO (en la pantalla: ExternalEvent)

Objetivo:

• Evitar las condiciones potenciales de funcionamiento inadecuadas del enfriador.

	ACCIÓN CORRECTIVA	CONSECUENCIA
La entrada de alarma/evento externo está abierta durante al menos 5 segundos. La "Falla externa" se ha configurado como "Evento"	Comprobar los motivos de un evento externo y si puede ser un problema potencial para un funcionamiento correcto del enfriador.	Ninguna

7.8.3 ENTRADA INCORRECTA DEL LÍMITE DE DEMANDA (en la pantalla: BadDemandLmInpW)

Objetivo:

• Evitar las condiciones potenciales de funcionamiento inadecuadas del enfriador.

Síntoma: la unidad está funcionand pantalla del controlador	o y el icono de la campana se esta	í moviendo en la		
CAUSAS	ACCIÓN CORRECTIVA	CONSECUENCIA		
Entrada de límite de demanda fuera de rango Para esta advertencia, se considera fuera de rango una señal inferior a 3mA o superior a 21mA.	1. Comprobar los valores de la señal de entrada del controlador de la unidad. Debe estar en el rango permitido mV; Comprobar todos los escudos eléctricos de los cableados; Comprobar el valor correcto de la salida del controlador de la unidad en caso de que la señal de entrada esté dentro del rango permitido.	No se puede utilizar la función del límite de demanda.		
REINICIO: Borrado automático cuando el límite de demanda está desactivado o la entrada de límite de demanda vuelve dentro de rango durante 5 segundos.				

7.8.4 ENTRADA INCORRECTA DE REINICIO DE TEMPERATURA DEL AGUA SALIENTE (LWT)

 $(\textit{en la pantalla:} \ BadSPtOvrdInpW)$

Objetivo:

• Evitar las condiciones potenciales de funcionamiento inadecuadas del enfriador.

Síntoma: la unidad está funcionand pantalla del controlador	o y el icono de la campana se esto	í moviendo en la
CAUSAS	ACCIÓN CORRECTIVA	CONSECUENCIA
Entrada de reinicio de LWT fuera de rango; Para esta advertencia, se considera fuera de rango una señal inferior a 3mA o superior a 21mA.	1. Comprobar los valores de la señal de entrada del controlador de la unidad. Debe estar en el rango permitido mV; Comprobar todos los escudos eléctricos de los cableados; Comprobar el valor correcto de la salida del controlador de la unidad en caso de que la señal de entrada esté dentro del rango permitido.	No se puede utilizar la función de reinicio de LWT.

REINICIO: Borrado automático cuando el reinicio de LWT está deshabilitado o la entrada de reinicio de LWT vuelve dentro de rango durante 5 segundos.

7.8.5 FALLA DEL SENSOR DE TEMPERATURA DEL AGUA DE ENTRADA DEL EVAPORADOR (EWT)

(en la pantalla: EvapEwtSenf)

Objetivo:

• Evitar las condiciones potenciales de funcionamiento inadecuadas del enfriador.

pantalla del controlador		T
CAUSAS	ACCIÓN CORRECTIVA	CONSECUENCIA
 El sensor está roto; Circuito cerrado en el sensor Circuito abierto en el sensor 	 Comprobar la integridad del sensor; Comprobar la salida correcta del sensor como se muestra en la sección 3.2 de este manual Comprobar si el sensor ha sufrido un cortocircuito con una medición de la resistencia; 	La unidad no puede controlar; Sustituir el sensor o corregir la falla para restaurar el funcionamiento correcto.
	3. Comprobar la instalación correcta del sensor en la tubería del circuito de agua. Comprobar la ausencia de agua o humedad en los contactos eléctricos del sensor;	

Comprobar si los conectores eléctricos están enchufados
correctamente; Comprobar si el cableado del sensor es correcto según el esquema eléctrico;
esquema electrico,

REINICIO: Borrado automático cuando el sensor está nuevamente dentro del rango.

7.9 Visión general de advertencias del circuito

LISTA DE			MENSAJE COMO SE MUESTRA EN LA PANTALLA
ADVERTENCIAS DEL CIRCUITO	1	Falla de bombeado	PdFail
DEL CIRCUITO			

7.9.1 FALLA DE BOMBEADO (en la pantalla: PdFail)

Objetivo:

• Informar del funcionamiento incorrecto del enfriador y terminar el bombeo para prevenir daños

CAUSAS	ACCIÓN CORRECTIVA	CONSECUENCIA
 EEXV no se está cerrando completamente, por lo que hay "cortocircuito" entre el lado de presión alta con el lado de presión baja del circuito; El sensor de presión baja no funciona correctamente; El ajuste en el controlador de la unidad de un valor de presión baja de bombeo no es correcto; El compresor del circuito está dañado internamente con problemas mecánicos por ejemplo en la válvula de control interna o en las espirales o aspas internas. 	 Comprobar que el funcionamiento sea adecuado y que la posición de cierre de EEXV sea completa; Comprobar el funcionamiento correcto del sensor de presión baja; Comprobar la sección 3.1 de este manual; Comprobar los ajustes en el controlador para el procedimiento de bombeo; Comprobar los compresores en los circuitos. 	Detención rápida del circuito.

7.9.2 Visión general de los eventos

Esta sección proporciona información útil para diagnosticar y corregir ciertos eventos que se pueden producir en la unidad.

Existen situaciones que pueden requerir alguna acción del enfriador o que deben registrarse para referencias futuras, pero no son lo suficientemente graves como para registrarse como alarmas.

Estos eventos se guardan en un registro separado de las alarmas.

Este registro muestra la fecha y la hora del último evento, la cuenta de los eventos del día actual y la cuenta de eventos para cada uno de los 7 días anteriores.

NOTA: En caso de que se produzca un evento en el enfriador, se requerirán acciones específicas o procedimientos de mantenimiento. Dichos eventos se pueden producir incluso con funcionamiento normal del enfriador.

Antes de iniciar el procedimiento de localización de fallas, realizar una inspección visual minuciosa de la unidad y buscar defectos evidentes como conexiones sueltas o cableado defectuoso.

Al realizar una inspección del panel de suministro o de la caja de seccionamiento de la unidad, asegurarse siempre de que el disyuntor de la unidad esté apagado.

7.9.3 Visión general de los eventos de la unidad

LISTA DE	MENSAJE MENÚ DE EVENTOS DE LA UNIDAD	
EVENTOS DE LA	1	Restauración de la alimentación de la unidad
UNIDAD		

7.9.4 RESTAURACIÓN DE LA ALIMENTACIÓN DE LA UNIDAD

Objetivo:

• Informar de eventos importantes relacionados producidos en el enfriador.

CAUSAS	ACCIÓN CORRECTIVA	CONSECUENCIA
 La unidad ha perdido la alimentación eléctrica durante un período de tiempo; El controlador de la unidad ha perdido su alimentación eléctrica debido a un fallo en el fusible 24V 	 Comprobar los motivos de pérdida de alimentación externa y si puede ser un problema potencial para un funcionamiento correcto del enfriador. Comprobar el fusible 24V 	Ninguna

7.10 Visión general de los eventos del circuito

	MENSAJE MENÚ DEL CIRCUITO DE LA UNIDAD	
LISTA DE EVENTOS	1	Presión baja de evaporador - Detenido
DEL CIRCUITO	2	Presión baja de evaporador - Descarga
	3	Presión alta del condensador - Descarga

7.10.1 PRESIÓN BAJA DEL EVAPORADOR - DETENIDO

Objetivo: Prevenir la presión excesivamente baja del evaporador en el enfriador y proporcionar indicaciones sobre el evento.

Síntoma: la unidad está funcionand en el controlador	o y el evento de presión baja o	del operador se enumera
CAUSAS	ACCIÓN CORRECTIVA	CONSECUENCIA
Este evento se activa si se cumplen todas las siguientes condiciones: estado del circuito = Funcionamiento Y presión del evaporador <= punto de ajuste de presión del evaporador baja - detenido Y el circuito actualmente no está en un arranque de OAT baja Y han pasado al menos 30 segundos desde que un compresor arrancó el circuito.	Comprobar la aproximación de la temperatura del refrigerante en el evaporador. Comprobar el flujo correcto de agua en el evaporador; Comprobar si EXV funciona correctamente Comprobar si hay pérdida de refrigerante Comprobar la calibración del instrumento	Inhibir el arranque de los compresores adicionales del circuito.

REINICIO: Mientras está en funcionamiento, en evento se reinicia si la presión del evaporador > punto de ajuste Presión baja del evaporador (detenido) + 90 kPa. El evento también se reinicia si el circuito ya no está en funcionamiento.

7.10.2 PRESIÓN BAJA DE EVAPORADOR - DESCARGA

Objetivo:

• Prevenir la presión excesivamente baja del evaporador en el enfriador y proporcionar indicaciones sobre el evento.

Síntoma: la unidad está funcionando y el evento de presión baja del operador se enumera en el controlador			
CAUSAS	ACCIÓN CORRECTIVA	CONSECUENCIA	
Este evento se activa si se cumplen todas las siguientes condiciones: estado del circuito = funcionamiento	Comprobar la aproximación de la temperatura del refrigerante en el evaporador.	Sacar de fase un compresor del circuito cada 10 segundos, mientras la presión del evaporador es inferior al punto de ajuste	

	T T	1 1
Y hay más de un compresor funcionando en el circuito	Comprobar el flujo correcto de agua en el evaporador;	de descarga, excepto el último.
Y presión del evaporador <= (punto de ajuste de la presión baja del	Comprobar si EXV funciona correctamente	
evaporador - descarga) durante un tiempo superior a la mitad del tiempo del estado de	Comprobar si hay pérdida de refrigerante	
congelación actual Y el circuito actualmente	Comprobar la calibración del instrumento	
no está en arranque OAT baja Y		
han pasado al menos 30 segundos desde que arrancó un compresor en el circuito.		
En unidades equipadas con 6 compresores, válvulas de expansión electrónica y 10 ventiladores o más,		
cuando arranca cada compresor debería haber una ventana de 2 minutos durante la cual		
la presión del evaporador debería descender 27 kPa más para activar la alarma.		
Después de esta ventana de 2 minutos, el punto de activación debería volver a la normalidad.		

REINICIO: Mientras está en funcionamiento, en evento se reinicia si la presión del evaporador > punto de ajuste Presión baja del evaporador (detenido) + 90 kPa. El evento también se reinicia si el circuito ya no está en funcionamiento.

7.10.3 PRESIÓN ALTA DEL CONDENSADOR - DETENIDO

7.10.4 PRESIÓN ALTA DEL CONDENSADOR - DESCARGA

Objetivo:

 Prevenir la presión excesiva del condensador en el enfriador y proporcionar indicaciones sobre el evento.

Síntoma: la unidad está funcionando y la PRESIÓN ALTA DEL CONDENSADOR se enumera en el controlador			
CAUSAS	ACCIÓN CORRECTIVA	CONSECUENCIA	
Este evento se activa si se cumplen todas las siguientes condiciones: estado del circuito = funcionamiento	Comprobar la aproximación de la temperatura del refrigerante en el condensador. Comprobar el flujo correcto de aire a través de la bobina Comprobar el funcionamiento adecuado de los ventiladores del condensador y las condiciones de limpieza adecuadas de las bobinas Comprobar si hay cortocircuito de aire del condensador en las bobinas	Sacar de fase un compresor del circuito cada 10 segundos, mientras la presión del condensador es superior al punto de ajuste de descarga, excepto el último. Inhibir la puesta en fase de más compresores hasta que las condiciones se restablezcan.	

REINICIO: Mientras está en funcionamiento, en evento se reinicia si la presión del condensador <= (Presión alta del condensador, descarga – 862 kPa). El evento también se reinicia si el circuito ya no está en funcionamiento.

8 Apéndice C: Diagnóstico básico del sistema de control

El controlador MicroTech III, los módulos de extensión y los módulos de comunicación están equipados con dos LED de estado (BSP y BUS) que indican el estado de operación de los dispositivos.

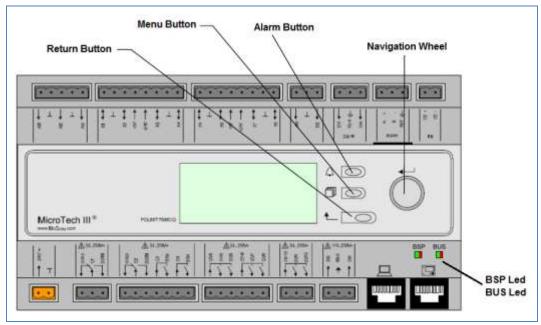


Figura del controlador "MicroTech III" con indicaciones de los botones y los LEDs principales

8.1 LED de módulo del controlador

El significado de ambos LED de estado para el módulo del controlador se indica en la tabla siguiente.

LED BSP	LED BUS	MODO	ACCIONES
Verde continuo	APAGADO	Aplicación en funcionamiento	Ninguno
Amarillo continuo	APAGADO	Aplicación cargada pero no en funcionamiento	Póngase en contacto con el servicio técnico
Rojo continuo	APAGADO	Error de hardware	Póngase en contacto con el servicio técnico
Amarillo intermitente	APAGADO	Aplicación no cargada	Póngase en contacto con el servicio técnico
Rojo intermitente	APAGADO	Error de BSP	Póngase en contacto con el servicio técnico
Rojo/verde intermitente	APAGADO	Actualización de aplicación/BSP	Póngase en contacto con el servicio técnico

8.2 LED de módulo de extensión

El significado de ambos LED de estado para el módulo de extensión se indica en la tabla siguiente.

LED BSP	LED BUS	MODO	ACCIONES
Verde continuo		BSP en funcionamiento	Ninguno
Rojo continuo		Error de hardware	Póngase en contacto con el servicio técnico
Rojo intermitente		Error de BSP	Póngase en contacto con el servicio técnico
	Verde continuo	Comunicación en funcionamiento, E/S activa	Ninguno
	Amarillo continuo	Comunicación en funcionamiento, falta parámetro	Póngase en contacto con el servicio técnico
	Rojo continuo	Falla de comunicación	Póngase en contacto con el servicio técnico

8.3 LED de módulo de comunicación

El significado del LED de estado BSP para el módulo de comunicación se indica en la tabla siguiente.

LED BSP	MODO	ACCIONES
Verde continuo	BSP en funcionamiento, comunicación con el controlador	Ninguno
Amarillo continuo	BSP en funcionamiento, no hay comunicación con el controlador	Póngase en contacto con el servicio técnico
Rojo continuo	Error de hardware	Póngase en contacto con el servicio técnico
Rojo intermitente	Error de BSP	Póngase en contacto con el servicio técnico
Rojo/verde intermitente	Actualización de aplicación/BSP	Ninguno

El estado del LED BUS depende del protocolo especial de comunicación.

Protocolo	LED BUS	MODO	
LON Ama módulo Rojo Ama	Verde continuo	Listo para la comunicación. (Todos los parámetros cargados, Neuron configurado). No indica una comunicación con otros dispositivos.	
	Amarillo continuo	Encendido/arranque	
	Rojo continuo	No hay comunicación con Neuron (error interno: puede solucionarse descargando una nueva aplicación LON)	
	Amarillo intermitente	No se puede establecer la comunicación con Neuron. Neuron debe configurarse en línea mediante la herramienta de LON.	

Protocolo	LED BUS	MODO
BACnet	Verde continuo	Listo para la comunicación. Se ha iniciado el servidor BACnet. No indica una comunicación activa
MSTP	P Amarillo continuo Encendido/arranque	
módulo	Rojo continuo	Servidor BACnet colapsado. Reinicio automático después de 3 segundos.

Protocolo	LED BUS	MODO
	Verde continuo	Listo para la comunicación. Se ha iniciado el servidor BACnet. No indica una comunicación activa
BACnet IP módulo	Amarillo continuo	Encendido/arranque. El LED permanece amarillo hasta que el módulo recibe una dirección IP; por lo tanto debe establecerse un enlace.
	Rojo continuo	Servidor BACnet colapsado. Reinicio automático después de 3 segundos.

Protocolo	LED BUS	MODO	
MODbus módulo	Verde continuo	Todas las comunicaciones en funcionamiento	
	Amarillo continuo	Encendido, o un canal configurado no se comunica con el Master (maestro).	
	Rojo continuo	Todas las comunicaciones colapsadas. No hay comunicación con el Master. El tiempo de expiración puede configurarse. Si el tiempo de expiración es cero, está deshabilitado.	

"La presente publicación se ha redactado sólo para fines informativos y no constituye una oferta vinculante para Daikin. Daikin ha recopilado el contenido de esta publicación según su conocimiento más actual. No se ofrece ninguna garantía expresa o implícita en relación con el carácter completo, la minuciosidad, la fiabilidad o la aptitud para fines especiales de su contenido, así como de los productos y servicios presentados en la misma. Las especificaciones están sujetas a cambios sin previo aviso. Consultar los datos comunicados en el momento del pedido. Daikin rechaza explícitamente toda responsabilidad por cualquier daño directo o indirecto, en el sentido más amplio, causado o relacionado con el uso y/o la interpretación de esta publicación. Todos los contenidos son propiedad de Daikin."

DAIKIN EUROPE N.V.

Zandvoordestraat 300 B-8400 Ostend – Bélgica www.daikineurope.com